Display options
Share it on

Cell Mol Neurobiol. 2022 Jan;42(1):225-242. doi: 10.1007/s10571-021-01078-3. Epub 2021 Apr 10.

Overview of the Neuroprotective Effects of the MAO-Inhibiting Antidepressant Phenelzine.

Cellular and molecular neurobiology

Dmitriy Matveychuk, Erin M MacKenzie, David Kumpula, Mee-Sook Song, Andrew Holt, Satyabrata Kar, Kathryn G Todd, Paul L Wood, Glen B Baker

Affiliations

  1. Department of Psychiatry (Neurochemical Research Unit), University of Alberta, 12-105B Clinical Sciences Building, Edmonton, AB, T6G 2G3, Canada.
  2. Altos Biologics, Seoul, South Korea.
  3. Department of Medicine (Neurology), University of Alberta, Edmonton, Canada.
  4. College of Veterinary Medicine, Lincoln Memorial University, Harrogate, TN, USA.
  5. Department of Psychiatry (Neurochemical Research Unit), University of Alberta, 12-105B Clinical Sciences Building, Edmonton, AB, T6G 2G3, Canada. [email protected].

PMID: 33839994 DOI: 10.1007/s10571-021-01078-3

Abstract

Phenelzine (PLZ) is a monoamine oxidase (MAO)-inhibiting antidepressant with anxiolytic properties. This multifaceted drug has a number of pharmacological and neurochemical effects in addition to inhibition of MAO, and findings on these effects have contributed to a body of evidence indicating that PLZ also has neuroprotective/neurorescue properties. These attributes are reviewed in this paper and include catabolism to the active metabolite β-phenylethylidenehydrazine (PEH) and effects of PLZ and PEH on the GABA-glutamate balance in brain, sequestration of reactive aldehydes, and inhibition of primary amine oxidase. Also discussed are the encouraging findings of the effects of PLZ in animal models of stroke, spinal cord injury, traumatic brain injury, and multiple sclerosis, as well other actions such as reduction of nitrative stress, reduction of the effects of a toxin on dopaminergic neurons, potential anticonvulsant actions, and effects on brain-derived neurotrophic factor, neural cell adhesion molecules, an anti-apoptotic factor, and brain levels of ornithine and N-acetylamino acids.

© 2021. The Author(s).

Keywords: Monoamine oxidase; Neuroprotection; Phenelzine; Reactive aldehydes; β-Phenylethylidenehydrazine; γ-Aminobutyric acid

References

  1. Aarre TF (2003) Phenelzine efficacy in refractory social anxiety disorder: a case series. Nord J Psychiatry 57:313–315. https://doi.org/10.1080/08039480310002110 - PubMed
  2. Adolfsson R, Gottfries C, Oreland L, Wiberg A, Winblad B (1980) Increased activity of brain and platelet monoamine oxidase in dementia of Alzheimer type. Life Sci 27:1029–1034 - PubMed
  3. Agostinelli E, Tempera G, Viceconte N et al (2010) Potential anticancer application of polyamine oxidation products formed by amine oxidase: a new therapeutic approach. Amino Acids 38:353–368. https://doi.org/10.1007/s00726-009-0431-8 - PubMed
  4. Airas L, Lindsberg PJ, Karjalainen-Lindsberg ML, Mononen I, Kotisaari K, Smith DJ, Jalkanen S (2008) Vascular adhesion protein-1 in human ischaemic stroke. Neuropathol Appl Neurobiol 34:394–402. https://doi.org/10.1111/j.1365-2990.2007.00911.x - PubMed
  5. Al-Nuaimi SK, MacKenzie EM, Baker GB (2012) Monoamine oxidase inhibitors and neuroprotection: a review. Am J Ther 19:436–448 - PubMed
  6. Baillet A, Chanteperdrix V, Trocmé C, Casez P, Garrel C, Besson G (2010) The role of oxidative stress in amyotrophic lateral sclerosis and Parkinson’s disease. Neurochem Res 35:1530–1537. https://doi.org/10.1007/s11064-010-0212-5 - PubMed
  7. Baker G, Matveychuk D, MacKenzie EM, Holt A, Wang Y, Kar S (2019) Attenuation of the effects of oxidative stress by the MAO-inhibiting antidepressant and carbonyl scavenger phenelzine. Chem Biol Interact 304:139–147. https://doi.org/10.1016/j.cbi.2019.03.003 - PubMed
  8. Baker GB, Dewhurst WG (1985) Biochemical theories of affective disorders. In: Dewhurst WG, Baker GB (eds) Pharmacotherapy of affective disorders: theory and practice. Croom Helm, London, pp 1–60 - PubMed
  9. Baker GB, Matveychuk D, MacKenzie EM, Dursun SM, Mousseau DD (2012) Monoamine oxidase inhibitors and neuroprotective mechanisms. Bull Clin Psychopharmacol 22:293–296 - PubMed
  10. Baker GB, Wong JT, Yeung JM, Coutts RT (1991) Effects of the antidepressant phenelzine on brain levels of gamma-aminobutyric acid (GABA). J Affect Disord 21:207–211 - PubMed
  11. Balu DT, Hoshaw BA, Malberg JE, Rosenzweig-Lipson S, Schechter LE, Lucki I (2008) Differential regulation of central BDNF protein levels by antidepressant and non-antidepressant drug treatments. Brain Res 1211:37–43 - PubMed
  12. Beach TG, Walker R, McGeer EG (1989) Patterns of gliosis in Alzheimer’s disease and aging cerebrum. Glia 2:420–436. https://doi.org/10.1002/glia.440020605 - PubMed
  13. Bedard K, Krause KH (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87:245–313. https://doi.org/10.1152/physrev.00044.2005 - PubMed
  14. Benson CA, Wong G, Tenorio G, Baker GB, Kerr BJ (2013) The MAO inhibitor phenelzine can improve functional outcomes in mice with established clinical signs in experimental autoimmune encephalomyelitis (EAE). Behav Brain Res 252:302–311. https://doi.org/10.1016/j.bbr.2013.06.019 - PubMed
  15. Bizzozero OA, DeJesus G, Callahan K, Pastuszyn A (2005) Elevated protein carbonylation in the brain white matter and gray matter of patients with multiple sclerosis. J Neurosci Res 81:687–695. https://doi.org/10.1002/jnr.20587 - PubMed
  16. Blier P (2016) Neurobiology of depression and mechanism of action of depression treatments. J Clin Psychiatry 77:e319. https://doi.org/10.4088/JCP.13097tx3c - PubMed
  17. Bourdon AK, Spano GM, Marshall W et al (2018) Metabolomic analysis of mouse prefrontal cortex reveals upregulated analytes during wakefulness compared to sleep. Sci Rep 8:11225. https://doi.org/10.1038/s41598-018-29511-6 - PubMed
  18. Bradley MA, Markesbery WR, Lovell MA (2010) Increased levels of 4-hydroxynonenal and acrolein in the brain in preclinical Alzheimer disease. Free Radic Biol Med 48:1570–1576. https://doi.org/10.1016/j.freeradbiomed.2010.02.016 - PubMed
  19. Buckley PF (2019) Neuroinflammation and schizophrenia. Curr Psychiatry Rep 21:72. https://doi.org/10.1007/s11920-019-1050-z - PubMed
  20. Buigues J, Vallejo J (1987) Therapeutic response to phenelzine in patients with panic disorder and agoraphobia with panic attacks. J Clin Psychiatry 48:55–59 - PubMed
  21. Burke WJ, Li SW, Chung HD et al (2004) Neurotoxicity of MAO metabolites of catecholamine neurotransmitters: role in neurodegenerative diseases. Neurotoxicology 25:101–115. https://doi.org/10.1016/s0161-813x(03)00090-1 - PubMed
  22. Burke WJ, Li SW, Williams EA, Nonneman R, Zahm DS (2003) 3,4-Dihydroxyphenylacetaldehyde is the toxic dopamine metabolite in vivo: implications for Parkinson’s disease pathogenesis. Brain Res 989:205–213 - PubMed
  23. Butler B, Acosta G, Shi R (2017) Exogenous acrolein intensifies sensory hypersensitivity after spinal cord injury in rat. J Neurol Sci 379:29–35. https://doi.org/10.1016/j.jns.2017.05.039 - PubMed
  24. Cagle BS, Crawford RA, Doorn JA (2019) Biogenic aldehyde-mediated mechanisms of toxicity in neurodegenerative disease. Curr Opin Toxicol 13:16–21. https://doi.org/10.1016/j.cotox.2018.12.002 - PubMed
  25. Cai Z (2014) Monoamine oxidase inhibitors: promising therapeutic agents for Alzheimer’s disease (Review). Mol Med Rep 9:1533–1541. https://doi.org/10.3892/mmr.2014.2040 - PubMed
  26. Calabrese V, Raffaele R, Cosentine E, Rizza V (1994) Changes in cerebrospinal fluid levels of malondialdehyde and glutathione reductase activity in multiple sclerosis. Int J Clin Pharmacol Res 14:119–123 - PubMed
  27. Cardenas-Rodriguez N, Huerta-Gertrudis B, Rivera-Espinosa L, Montesinos-Correa H, Bandala C, Carmona-Aparicio L, Coballase-Urrutia E (2013) Role of oxidative stress in refractory epilepsy: evidence in patients and experimental models. Int J Mol Sci 14:1455–1476. https://doi.org/10.3390/ijms14011455 - PubMed
  28. Casado A, Encarnacion Lopez-Fernandez M, Concepcion Casado M, de La Torre R (2008) Lipid peroxidation and antioxidant enzyme activities in vascular and Alzheimer dementias. Neurochem Res 33:450–458. https://doi.org/10.1007/s11064-007-9453-3 - PubMed
  29. Cassarino DS, Parks JK, Parker WD Jr, Bennett JP Jr (1999) The parkinsonian neurotoxin MPP - PubMed
  30. Cebak JE, Singh IN, Hill RL, Wang JA, Hall ED (2017) Phenelzine protects brain mitochondrial function in vitro and in vivo following traumatic brain injury by scavenging the reactive carbonyls 4-hydroxynonenal and acrolein leading to cortical histological neuroprotection. J Neurotrauma 34:1302–1317. https://doi.org/10.1089/neu.2016.4624 - PubMed
  31. Chen AT, Nasrallah HA (2019) Neuroprotective effects of the second generation antipsychotics. Schizophr Res 208:1–7. https://doi.org/10.1016/j.schres.2019.04.009 - PubMed
  32. Chen CH, Joshi AU, Mochly-Rosen D (2016a) The role of mitochondrial aldehyde dehydrogenase 2 (ALDH2) in neuropathology and neurodegeneration. Acta Neurol Taiwanica 25(4):111–123 - PubMed
  33. Chen CM, Liu JL, Wu YR, Chen YC, Cheng HS, Cheng ML, Chiu DT (2009) Increased oxidative damage in peripheral blood correlates with severity of Parkinson’s disease. Neurobiol Dis 33:429–435. https://doi.org/10.1016/j.nbd.2008.11.011 - PubMed
  34. Chen K, Maley J, Yu PH (2006) Potential implications of endogenous aldehydes in beta-amyloid misfolding, oligomerization and fibrillogenesis. J Neurochem 99:1413–1424 - PubMed
  35. Chen Xu W, Yi Y, Qiu L, Shuaib A (2000) Neuroprotective activity of tiagabine in a focal embolic model of cerebral ischemia. Brain Res 874:75–77. https://doi.org/10.1016/s0006-8993(00)02554-3 - PubMed
  36. Chen Z, Park J, Butler B et al (2016b) Mitigation of sensory and motor deficits by acrolein scavenger phenelzine in a rat model of spinal cord contusive injury. J Neurochem 138:328–338. https://doi.org/10.1111/jnc.13639 - PubMed
  37. Clineschmidt BV, Horita A (1969a) The monoamine oxidase catalyzed degradation of phenelzine-l-14C, an irreversible inhibitor of monoamine oxidase—I. Studies in vitro. Biochem Pharmacol 18:1011–1020 - PubMed
  38. Clineschmidt BV, Horita A (1969b) The monoamine oxidase catalyzed degradation of phenelzine-l-14C, an irreversible inhibitor of monoamine oxidase—II. Studies in vivo. Biochem Pharmacol 18:1021–1028 - PubMed
  39. Cohen SM, Tsien RW, Goff DC, Halassa MM (2015) The impact of NMDA receptor hypofunction on GABAergic neurons in the pathophysiology of schizophrenia. Schizophr Res 167:98–107. https://doi.org/10.1016/j.schres.2014.12.026 - PubMed
  40. Dalfo E, Ferrer I (2008) Early alpha-synuclein lipoxidation in neocortex in Lewy body diseases. Neurobiol Aging 29:408–417. https://doi.org/10.1016/j.neurobiolaging.2006.10.022 - PubMed
  41. Dalfo E, Portero-Otin M, Ayala V, Martinez A, Pamplona R, Ferrer I (2005) Evidence of oxidative stress in the neocortex in incidental Lewy body disease. J Neuropathol Exp Neurol 64:816–830 - PubMed
  42. Dang TN, Arseneault M, Murthy V, Ramassamy C (2010) Potential role of acrolein in neurodegeneration and in Alzheimer’s disease. Curr Mol Pharmacol 3:66–78 - PubMed
  43. Davidson J, Raft D, Pelton S (1987) An outpatient evaluation of phenelzine and imipramine. J Clin Psychiatry 48:143–146 - PubMed
  44. del Mar HM, Esteban M, Szabo P, Boada M, Unzeta M (2005) Human plasma semicarbazide sensitive amine oxidase (SSAO), beta-amyloid protein and aging. Neurosci Lett 384:183–187 - PubMed
  45. Demougeot C, Garnier P, Mossiat C, Bertrand N, Giroud M, Beley A, Marie C (2001) N-acetylaspartate, a marker of both cellular dysfunction and neuronal loss: its relevance to studies of acute brain injury. J Neurochem 77:408–415. https://doi.org/10.1046/j.1471-4159.2001.00285.x - PubMed
  46. Dexter DT, Carter CJ, Wells FR, Agid Y, Lees A, Jenner P, Marsden CD (1989) Basal lipid peroxidation in substantia nigra is increased in Parkinson’s disease. J Neurochem 52:381–389 - PubMed
  47. Due MR, Park J, Zheng L, Walls M, Allette YM, White FA, Shi R (2014) Acrolein involvement in sensory and behavioral hypersensitivity following spinal cord injury in the rat. J Neurochem 128:776–786. https://doi.org/10.1111/jnc.12500 - PubMed
  48. Duffy S, Nguyen PV, Baker GB (2004) Phenylethylidenehydrazine, a novel GABA-transaminase inhibitor, reduces epileptiform activity in rat hippocampal slices. Neuroscience 126:423–432. https://doi.org/10.1016/j.neuroscience.2004.03.007 - PubMed
  49. Dwivedi Y, Rizavi HS, Pandey GN (2006) Antidepressants reverse corticosterone-mediated decrease in brain-derived neurotrophic factor expression: differential regulation of specific exons by antidepressants and corticosterone. Neuroscience 139:1017–1029 - PubMed
  50. Eisenhofer G, Kopin IJ, Goldstein DS (2004) Catecholamine metabolism: a contemporary view with implications for physiology and medicine. Pharmacol Rev 56:331–349. https://doi.org/10.1124/pr.56.3.1 - PubMed
  51. Esterbauer H, Schaur RJ, Zollner H (1991) Chemistry and biochemistry of 4-hydroxynonenal, malondialdehyde and related aldehydes. Free Radic Biol Med 11:81–128 - PubMed
  52. Ferrer I, Lizcano JM, Hernandez M, Unzeta M (2002) Overexpression of semicarbazide sensitive amine oxidase in the cerebral blood vessels in patients with Alzheimer’s disease and cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Neurosci Lett 321:21–24 - PubMed
  53. Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408:239–247. https://doi.org/10.1038/35041687 - PubMed
  54. Foerster BR, Pomper MG, Callaghan BC et al (2013) An imbalance between excitatory and inhibitory neurotransmitters in amyotrophic lateral sclerosis revealed by use of 3-T proton magnetic resonance spectroscopy. JAMA Neurol 70:1009–1016. https://doi.org/10.1001/jamaneurol.2013.234 - PubMed
  55. Fowler JS, Logan J, Volkow ND, Wang GJ, MacGregor RR, Ding YS (2002) Monoamine oxidase: radiotracer development and human studies. Methods 27:263–277 - PubMed
  56. Fowler JS, Volkow ND, Wang GJ, Logan J, Pappas N, Shea C, MacGregor R (1997) Age-related increases in brain monoamine oxidase B in living healthy human subjects. Neurobiol Aging 18:431–435 - PubMed
  57. Fred SM, Laukkanen L, Brunello CA et al (2019) Pharmacologically diverse antidepressants facilitate TRKB receptor activation by disrupting its interaction with the endocytic adaptor complex AP-2. J Biol Chem 294:18150–18161. https://doi.org/10.1074/jbc.RA119.008837 - PubMed
  58. García-Fuster MJ, García-Sevilla JA (2016) Effects of anti-depressant treatments on FADD and p-FADD protein in rat brain cortex: enhanced anti-apoptotic p-FADD/FADD ratio after chronic desipramine and fluoxetine administration. Psychopharmacology 233:2955–2971. https://doi.org/10.1007/s00213-016-4342-6 - PubMed
  59. Gerlach M, Youdim MB, Riederer P (1996) Pharmacology of selegiline. Neurology 47:S137-145 - PubMed
  60. Gillman PK (2018) A reassessment of the safety profile of monoamine oxidase inhibitors: elucidating tired old tyramine myths. J Neural Transm 125:1707–1717. https://doi.org/10.1007/s00702-018-1932-y - PubMed
  61. Gomez-Ramos A, Diaz-Nido J, Smith MA, Perry G, Avila J (2003) Effect of the lipid peroxidation product acrolein on tau phosphorylation in neural cells. J Neurosci Res 71:863–870. https://doi.org/10.1002/jnr.10525 - PubMed
  62. Green AR, Hainsworth AH, Jackson DM (2000) GABA potentiation: a logical pharmacological approach for the treatment of acute ischaemic stroke. Neuropharmacology 39:1483–1494 - PubMed
  63. Greilberger J, Koidl C, Greilberger M et al (2008) Malondialdehyde, carbonyl proteins and albumin-disulphide as useful oxidative markers in mild cognitive impairment and Alzheimer’s disease. Free Radic Res 42:633–638. https://doi.org/10.1080/10715760802255764 - PubMed
  64. Grünblatt E, Mandel S, Jacob-Hirsch J et al (2004) Gene expression profiling of Parkinsonian substantia nigra pars compacta; alterations in ubiquitin-proteasome, heat shock protein, iron and oxidative stress regulated proteins, cell adhesion/cellular matrix and vesicle trafficking genes. J Neural Transm 111:1543–1573. https://doi.org/10.1007/s00702-004-0212-1 - PubMed
  65. Gubisne-Haberle D, Hill W, Kazachkov M, Richardson JS, Yu PH (2004) Protein cross-linkage induced by formaldehyde derived from semicarbazide-sensitive amine oxidase-mediated deamination of methylamine. J Pharmacol Exp Ther 310:1125–1132. https://doi.org/10.1124/jpet.104.068601 - PubMed
  66. Günther L, Beck R, Xiong G et al (2015) N-acetyl-L-leucine accelerates vestibular compensation after unilateral labyrinthectomy by action in the cerebellum and thalamus. PLoS ONE 10:e0120891. https://doi.org/10.1371/journal.pone.0120891 - PubMed
  67. Gustaw-Rothenberg K, Kowalczuk K, Stryjecka-Zimmer M (2010) Lipid peroxidation markers in Alzheimer’s disease and vascular dementia. Geriatr Gerontol Int 10:161–166. https://doi.org/10.1111/j.1447-0594.2009.00571.x - PubMed
  68. Hill RL, Kulbe JR, Singh IN, Wang JA, Hall ED (2018) Synaptic mitochondria are more susceptible to traumatic brain injury-induced oxidative damage and respiratory dysfunction than non-synaptic mitochondria. Neuroscience 386:265–283. https://doi.org/10.1016/j.neuroscience.2018.06.028 - PubMed
  69. Hill RL, Singh IN, Wang JA, Hall ED (2017) Time courses of post-injury mitochondrial oxidative damage and respiratory dysfunction and neuronal cytoskeletal degradation in a rat model of focal traumatic brain injury. Neurochem Int 111:45–56. https://doi.org/10.1016/j.neuint.2017.03.015 - PubMed
  70. Hill RL, Singh IN, Wang JA, Hall ED (2019) Effects of phenelzine administration on mitochondrial function, calcium handling, and cytoskeletal degradation after experimental traumatic brain injury. J Neurotrauma 36:1231–1251. https://doi.org/10.1089/neu.2018.5946 - PubMed
  71. Hill RL, Singh IN, Wang JA, Kulbe JR, Hall ED (2020) Protective effects of phenelzine administration on synaptic and non-synaptic cortical mitochondrial function and lipid peroxidation-mediated oxidative damage following TBI in young adult male rats. Exp Neurol 330:113322. https://doi.org/10.1016/j.expneurol.2020.113322 - PubMed
  72. Hogard ML, Lunte CE, Lunte SM (2017) Detection of reactive aldehyde biomarkers in biological samples using solid-phase extraction pre-concentration and liquid chromatography with fluorescence detection. Anal Methods 9:1848–1854. https://doi.org/10.1039/C6AY03327J - PubMed
  73. Holt A, Berry MD, Boulton AA (2004) On the binding of monoamine oxidase inhibitors to some sites distinct from the MAO active site, and effects thereby elicited. Neurotoxicology 25:251–266 - PubMed
  74. Holt A, Palcic MM (2006) A peroxidase-coupled continuous absorbance plate-reader assay for flavin monoamine oxidases, copper-containing amine oxidases and related enzymes. Nat Protoc 1(5):2498–2505. https://doi.org/10.1038/nprot.2006.402 - PubMed
  75. Horita A (1965) The initial inactivation of phenelzine by a monoamine oxidase-like system in vitro and in vivo. Br J Pharmacol Chemother 24:245–252. https://doi.org/10.1111/j.1476-5381.1965.tb02100.x - PubMed
  76. Horváth Á, Menghis A, Botz B et al (2017) Analgesic and anti-inflammatory effects of the novel semicarbazide-sensitive amine-oxidase inhibitor SzV-1287 in chronic arthritis models of the mouse. Sci Rep 7:39863. https://doi.org/10.1038/srep39863 - PubMed
  77. Houen G, Bock K, Jensen AL (1994) HPLC and NMR investigation of the serum amine oxidase catalyzed oxidation of polyamines. Acta Chem Scand 48:52–60 - PubMed
  78. Huang YJ, Jin MH, Pi RB et al (2013) Acrolein induces Alzheimer’s disease-like pathologies in vitro and in vivo. Toxicol Lett 217:184–191. https://doi.org/10.1016/j.toxlet.2012.12.023 - PubMed
  79. Hunsberger J, Austin DR, Henter ID, Chen G (2009) The neurotrophic and neuroprotective effects of psychotropic agents. Dialogues Clin Neurosci 11:333–348. https://doi.org/10.31887/DCNS.2009.11.3/jhunsberger - PubMed
  80. Hunter MIS, Nlemadim BC, Davidson DLW (1985) Lipid peroxidation products and antioxidant proteins in plasma and cerebrospinal fluid from multiple sclerosis patients. Neurochem Res 10:1645–1652 - PubMed
  81. Ilic TV, Jovanovic M, Jovicic A, Tomovic M (1999) Oxidative stress indicators are elevated in de novo Parkinson’s disease patients. Funct Neurol 14:141–147 - PubMed
  82. Ivanova S, Botchkina G, Al-Abed Y et al (1998) Cerebral ischemia enhances polyamine oxidation: identification of enzymatically formed 3-aminopropanal as an endogenous mediator of neuronal and glial cell death. J Exp Med 188:327–340 - PubMed
  83. Jarnicki AG, Schilter H, Liu G et al (2016) The inhibitor of semicarbazide-sensitive amine oxidase, PXS-4728A, ameliorates key features of chronic obstructive pulmonary disease in a mouse model. Br J Pharmacol 173:3161–3175. https://doi.org/10.1111/bph.13573 - PubMed
  84. Jarrahi A, Braun M, Ahluwalia M et al (2020) Revisiting traumatic brain injury: from molecular mechanisms to therapeutic interventions. Biomedicines. https://doi.org/10.3390/biomedicines8100389 - PubMed
  85. Jiang ZJ, Richardson JS, Yu PH (2008) The contribution of cerebral vascular semicarbazide-sensitive amine oxidase to cerebral amyloid angiopathy in Alzheimer’s disease. Neuropathol Appl Neurobiol 34:194–204. https://doi.org/10.1111/j.1365-2990.2007.00886.x - PubMed
  86. Jo S, Yarishkin O, Hwang YE et al (2014) GABA from reactive astrocytes impairs memory in mouse models of Alzheimer’s disease. Nat Med. https://doi.org/10.1038/nm.3639 - PubMed
  87. Joseph TP, Jagadeesan N, Sai LY, Lin SL, Sahu S, Schachner M (2020) Adhesion molecule L1 agonist mimetics protect against the pesticide paraquat-induced locomotor deficits and biochemical alterations in zebrafish. Front Neurosci 14:458. https://doi.org/10.3389/fnins.2020.00458 - PubMed
  88. Jossan S, Gillberg P, Gottfries C, Karlsson I, Oreland L (1991) Monoamine oxidase B in brains from patients with Alzheimer’s disease: a biochemical and autoradiographical study. Neuroscience 45:1–12. https://doi.org/10.1016/0306-4522(91)90098-9 - PubMed
  89. Jossan SS, Hiraga Y, Oreland L (1989) The cholinergic neurotoxin ethylcholine mustard aziridinium (AF64A) induces an increase in MAO-B activity in the rat brain. Brain Res 476:291–297 - PubMed
  90. Kennedy S, Holt A, Baker G (2009) Monoamine oxidase inhibitors. In: Sadock B, Sadock V, Ruiz P (eds) Comprehensive textbook of psychiatry. Lippincott Williams and Wilkins, New York, pp 3154–3164 - PubMed
  91. Ketter TA, Wang PW (2003) The emerging differential roles of GABAergic and antiglutamatergic agents in bipolar disorders. J Clin Psychiatry 64(Suppl 3):15–20 - PubMed
  92. Khoramjouy M, Naderi N, Kobarfard F, Heidarli E, Faizi M (2020) An intensified acrolein exposure can affect memory and cognition in rat. Neurotox Res. https://doi.org/10.1007/s12640-020-00278-x - PubMed
  93. Kim YS, Yoon BE (2017) Altered GABAergic signaling in brain disease at various stages of life. Exp Neurobiol 26:122–131. https://doi.org/10.5607/en.2017.26.3.122 - PubMed
  94. Kiss J, Jalkanen S, Fülöp F, Savunen T, Salmi M (2008) Ischemia-reperfusion injury is attenuated in VAP-1-deficient mice and by VAP-1 inhibitors. Eur J Immunol 38:3041–3049. https://doi.org/10.1002/eji.200838651 - PubMed
  95. Kuhla B, Haase C, Flach K, Luth HJ, Arendt T, Munch G (2007) Effect of pseudophosphorylation and cross-linking by lipid peroxidation and advanced glycation end product precursors on tau aggregation and filament formation. J Biol Chem 282:6984–6991. https://doi.org/10.1074/jbc.M609521200 - PubMed
  96. Kulbe JR, Singh IN, Wang JA, Cebak JE, Hall ED (2018) Continuous infusion of phenelzine, cyclosporine A, or their combination: evaluation of mitochondrial bioenergetics, oxidative damage, and cytoskeletal degradation following severe controlled cortical impact traumatic brain injury in rats. J Neurotrauma 35:1280–1293. https://doi.org/10.1089/neu.2017.5353 - PubMed
  97. Kumpula D, Rauw G, MacKenzie E, Dursun S, Baker G (2010) β-Phenylethylamine and β-phenylethylidenehydrazine are important metabolites of the MAO inhibitor phenelzine. In: Proceedings of the joint annual meeting of Canadian College of Neuropsychopharmacology and Canadian Association of Neuroscience, Ottawa, ON, Canada - PubMed
  98. Lee CS, Han ES, Lee WB (2003) Antioxidant effect of phenelzine on MPP - PubMed
  99. Lee SE, Park YS (2013) Role of lipid peroxidation-derived α, β-unsaturated aldehydes in vascular dysfunction. Oxid Med Cell Longev 2013:629028. https://doi.org/10.1155/2013/629028 - PubMed
  100. Leker RR, Neufeld MY (2003) Anti-epileptic drugs as possible neuroprotectants in cerebral ischemia. Brain Res Rev 42:187–203. https://doi.org/10.1016/s0165-0173(03)00170-x - PubMed
  101. Leung G, Sun W, Zheng L, Brookes S, Tully M, Shi R (2011) Anti-acrolein treatment improves behavioral outcome and alleviates myelin damage in experimental autoimmune encephalomyelitis mouse. Neuroscience 173:150–155. https://doi.org/10.1016/j.neuroscience.2010.11.018 - PubMed
  102. Li R, Sahu S, Schachner M (2018) Phenelzine, a cell adhesion molecule L1 mimetic small organic compound, promotes functional recovery and axonal regrowth in spinal cord-injured zebrafish. Pharmacol Biochem Behav 171:30–38. https://doi.org/10.1016/j.pbb.2018.05.013 - PubMed
  103. Li XH, Xie JZ, Jiang X et al (2012) Methylglyoxal induces tau hyperphosphorylation via promoting AGEs formation. Neuromol Med 14:338–348. https://doi.org/10.1007/s12017-012-8191-0 - PubMed
  104. Li XM, Xu H (2007) Evidence for neuroprotective effects of antipsychotic drugs: implications for the pathophysiology and treatment of schizophrenia. Int Rev Neurobiol 77:107–142. https://doi.org/10.1016/s0074-7742(06)77004-0 - PubMed
  105. Lieberman JA, Bymaster FP, Meltzer HY et al (2008) Antipsychotic drugs: comparison in animal models of efficacy, neurotransmitter regulation, and neuroprotection. Pharmacol Rev 60:358–403. https://doi.org/10.1124/pr.107.00107 - PubMed
  106. Liebowitz MR, Gorman JM, Fyer AJ et al (1988) Pharmacotherapy of social phobia: an interim report of a placebo-controlled comparison of phenelzine and atenolol. J Clin Psychiatry 49:252–257 - PubMed
  107. Lin Y, Chen Z, Tang J, Cao P, Shi R (2018) Acrolein contributes to the neuropathic pain and neuron damage after ischemic-reperfusion spinal cord injury. Neuroscience 384:120–130. https://doi.org/10.1016/j.neuroscience.2018.05.029 - PubMed
  108. Liu X, Erikson C, Brun A (1996) Cortical synaptic changes and gliosis in normal aging, Alzheimer’s disease and frontal lobe degeneration. Dementia 7:128–134 - PubMed
  109. Liu-Snyder P, Borgens RB, Shi R (2006) Hydralazine rescues PC12 cells from acrolein-mediated death. J Neurosci Res 84:219–227. https://doi.org/10.1002/jnr.20862 - PubMed
  110. Lizcano JM, Fernández de Arriba A, Tipton KF, Unzeta M (1996) Inhibition of bovine lung semicarbazide-sensitive amine oxidase (SSAO) by some hydrazine derivatives. Biochem Pharmacol 52:187–195 - PubMed
  111. Lorigados Pedre L, Gallardo JM, Morales Chacon LM et al (2018) Oxidative stress in patients with drug resistant partial complex seizure. Behav Sci. https://doi.org/10.3390/bs8060059 - PubMed
  112. Lovell MA, Xie C, Markesbery WR (2001) Acrolein is increased in Alzheimer’s disease brain and is toxic to primary hippocampal cultures. Neurobiol Aging 22:187–194 - PubMed
  113. Luscher B, Shen Q, Sahir N (2011) The GABAergic deficit hypothesis of major depressive disorder. Mol Psychiatry 16:383–406. https://doi.org/10.1038/mp.2010.120 - PubMed
  114. Lyles GA (1996) Mammalian plasma and tissue-bound semicarbazide-sensitive amine oxidases: biochemical, pharmacological and toxicological aspects. Int J Biochem Cell Biol 28:259–274 - PubMed
  115. Lyles GA, Chalmers J (1992) The metabolism of aminoacetone to methylglyoxal by semicarbazide-sensitive amine oxidase in human umbilical artery. Biochem Pharmacol 43:1409–1414 - PubMed
  116. Lyles GA, Holt A, Marshall CM (1990) Further studies on the metabolism of methylamine by semicarbazide-sensitive amine oxidase activities in human plasma, umbilical artery and rat aorta. J Pharm Pharmacol 42:332–338 - PubMed
  117. Ma Q, Manaenko A, Khatibi NH, Chen W, Zhang JH, Tang J (2011) Vascular adhesion protein-1 inhibition provides antiinflammatory protection after an intracerebral hemorrhagic stroke in mice. J Cereb Blood Flow Metab 31:881–893. https://doi.org/10.1038/jcbfm.2010.167 - PubMed
  118. MacKenzie EM (2009) Neurochemical and neuroprotective aspects of phenelzine and its active metabolite β-phenylethylidenehydrazine. PhD Thesis, University of Alberta - PubMed
  119. MacKenzie EM, Fassihi A, Davood A et al (2008a) N-propynyl analogs of β-phenylethylidenehydrazines: synthesis and evaluation of effects on glycine, GABA, and monoamine oxidase. Bioorg Med Chem 16:8254–8263. https://doi.org/10.1016/j.bmc.2008.07.027 - PubMed
  120. MacKenzie EM, Grant SL, Baker GB, Wood PL (2008b) Phenelzine causes an increase in brain ornithine that is prevented by prior monoamine oxidase inhibition. Neurochem Res. https://doi.org/10.1007/s11064-007-9448-0 - PubMed
  121. MacKenzie EM, Song MS, Dursun SM, Tomlinson S, Todd KG, Baker GB (2010) Phenelzine: an old drug that may hold clues to the development of new neuroprotective agents. Bull Clin Psychopharmacol 20:179–186 - PubMed
  122. Magyar K, Szende B (2004) (−)-Deprenyl, a selective MAO-B inhibitor, with apoptotic and anti-apoptotic properties. Neurotoxicology 25:233–242. https://doi.org/10.1016/S0161-813X(03)00102-5 - PubMed
  123. Manzoor S, Hoda N (2020) A comprehensive review of monoamine oxidase inhibitors as Anti-Alzheimer’s disease agents: a review. Eur J Med Chem 206:112787. https://doi.org/10.1016/j.ejmech.2020.112787 - PubMed
  124. Marchitti SA, Deitrich RA, Vasiliou V (2007) Neurotoxicity and metabolism of the catecholamine-derived 3,4-dihydroxyphenylacetaldehyde and 3,4-dihydroxyphenylglycolaldehyde: the role of aldehyde dehydrogenase. Pharmacol Rev 59:125–150. https://doi.org/10.1124/pr.59.2.1 - PubMed
  125. Marcus DL, Thomas C, Rodriguez C, Simberkoff K, Tsai JS, Strafaci JA, Freedman ML (1998) Increased peroxidation and reduced antioxidant enzyme activity in Alzheimer’s disease. Exp Neurol 150:40–44. https://doi.org/10.1006/exnr.1997.6750 - PubMed
  126. Martin-Aragon S, Bermejo-Bescos P, Benedi J, Felici E, Gil P, Ribera JM, Villar AM (2009) Metalloproteinase’s activity and oxidative stress in mild cognitive impairment and Alzheimer’s disease. Neurochem Res 34:373–378. https://doi.org/10.1007/s11064-008-9789-3 - PubMed
  127. Masato A, Plotegher N, Boassa D, Bubacco L (2019) Impaired dopamine metabolism in Parkinson’s disease pathogenesis. Mol Neurodegener 14:35. https://doi.org/10.1186/s13024-019-0332-6 - PubMed
  128. Matveychuk D (2015) Novel properties of the multifaceted drug phenelzine and its metabolite β-phenylethylidenehydrazine. PhD Thesis, University of Alberta - PubMed
  129. Matveychuk D, Dursun S, Wood P, Baker G (2011) Reactive aldehydes and neurodegenerative disorders. Bull Clin Psychopharmacol 21:277–288. https://doi.org/10.5455/bcp.19691231040000 - PubMed
  130. Matveychuk D, Nunes E, Ullah N, Velazquez-Martinez CA, MacKenzie EM, Baker GB (2013) Comparison of phenelzine and geometric isomers of its active metabolite, beta-phenylethylidenehydrazine, on rat brain levels of amino acids, biogenic amine neurotransmitters and methylamine. J Neural Transm 120:987–996. https://doi.org/10.1007/s00702-013-0978-0 - PubMed
  131. McGrath PJ, Stewart JW, Harrison W, Wager S, Quitkin FM (1986) Phenelzine treatment of melancholia. J Clin Psychiatry 47:420–422 - PubMed
  132. McKenna KF, McManus DJ, Baker GB, Coutts RT (1994) Chronic administration of the antidepressant phenelzine and its N-acetyl analogue: effects on GABAergic function. J Neural Transm Suppl 41:115–122 - PubMed
  133. Mifflin KA, Benson C, Thorburn KC, Baker GB, Kerr BJ (2016) Manipulation of neurotransmitter levels has differential effects on formalin-evoked nociceptive behavior in male and female mice. J Pain 17:483–498. https://doi.org/10.1016/j.jpain.2015.12.013 - PubMed
  134. Moghe A, Ghare S, Lamoreau B, Mohammad M, Barve S, McClain C, Joshi-Barve S (2015) Molecular mechanisms of acrolein toxicity: relevance to human disease. Toxicol Sci 143:242–255. https://doi.org/10.1093/toxsci/kfu233 - PubMed
  135. Musgrave T, Benson C, Wong G et al (2011) The MAO inhibitor phenelzine improves functional outcomes in mice with experimental autoimmune encephalomyelitis (EAE). Brain Behav Immun 25:1677–1688. https://doi.org/10.1016/j.bbi.2011.06.011 - PubMed
  136. Mustafa AG, Al-Shboul O, Alfaqih MA, Al-Qudah MA, Al-Dwairi AN (2018a) Phenelzine reduces the oxidative damage induced by peroxynitrite in plasma lipids and proteins. Arch Physiol Biochem 124:418–423. https://doi.org/10.1080/13813455.2017.1415939 - PubMed
  137. Mustafa AG, Alfaqih MA, Al-Shboul O (2018b) The 4-hydroxynonenal mediated oxidative damage of blood proteins and lipids involves secondary lipid peroxidation reactions. Exp Ther Med 16:2132–2137. https://doi.org/10.3892/etm.2018.6419 - PubMed
  138. Nam DT, Arseneault M, Murthy V, Ramassamy C (2010) Potential role of acrolein in neurodegeneration and in Alzheimer’s disease. Curr Mol Pharmacol 3:66–78 - PubMed
  139. Naylor DE (2010) Glutamate and GABA in the balance: convergent pathways sustain seizures during status epilepticus. Epilepsia 51(Suppl 3):106–109. https://doi.org/10.1111/j.1528-1167.2010.02622.x - PubMed
  140. Ng F, Berk M, Dean O, Bush AI (2008) Oxidative stress in psychiatric disorders: evidence base and therapeutic implications. Int J Neuropsychopharmacol 11:851–876. https://doi.org/10.1017/s1461145707008401 - PubMed
  141. Nibuya M, Morinobu S, Duman RS (1995) Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments. J Neurosci 15:7539–7547 - PubMed
  142. Niemann B, Rohrbach S, Miller MR, Newby DE, Fuster V, Kovacic JC (2017) Oxidative stress and cardiovascular risk: obesity, diabetes, smoking, and pollution: part 3 of a 3-part series. J Am Coll Cardiol 70:230–251. https://doi.org/10.1016/j.jacc.2017.05.043 - PubMed
  143. O’Brien PJ, Siraki AG, Shangari N (2005) Aldehyde sources, metabolism, molecular toxicity mechanisms, and possible effects on human health. Crit Rev Toxicol 35:609–662 - PubMed
  144. O’Rourke AM, Wang EY, Salter-Cid L et al (2007) Benefit of inhibiting SSAO in relapsing experimental autoimmune encephalomyelitis. J Neural Transm 114:845. https://doi.org/10.1007/s00702-007-0699-3 - PubMed
  145. Olowe R, Sandouka S, Saadi A, Shekh-Ahmad T (2020) Approaches for reactive oxygen species and oxidative stress quantification in epilepsy. Antioxidants. https://doi.org/10.3390/antiox9100990 - PubMed
  146. Oreland L, Gottfries CG (1986) Brain and brain monoamine oxidase in aging and in dementia of Alzheimer’s type. Prog Neuro-Psychopharmacol Biol Psychiatry 10:533–540 - PubMed
  147. Ou J, Zhang Y, Montine T (2002) In vivo assessment of lipid peroxidation products associated with age-related neurodegenerative diseases. Exp Neurol 175:363–369. https://doi.org/10.1006/exnr.2002.7923 - PubMed
  148. Padurariu M, Ciobica A, Hritcu L, Stoica B, Bild W, Stefanescu C (2010) Changes of some oxidative stress markers in the serum of patients with mild cognitive impairment and Alzheimer’s disease. Neurosci Lett 469:6–10. https://doi.org/10.1016/j.neulet.2009.11.033 - PubMed
  149. Pannecoeck R, Serruys D, Benmeridja L, Delanghe JR, van Geel N, Speeckaert R, Speeckaert MM (2015) Vascular adhesion protein-1: role in human pathology and application as a biomarker. Crit Rev Clin Lab Sci 52:284–300. https://doi.org/10.3109/10408363.2015.1050714 - PubMed
  150. Panneton WM, Kumar VB, Gan Q, Burke WJ, Galvin JE (2010) The neurotoxicity of DOPAL: behavioral and stereological evidence for its role in Parkinson disease pathogenesis. PLoS ONE 5:e15251. https://doi.org/10.1371/journal.pone.0015251 - PubMed
  151. Park J, Zheng L, Acosta G et al (2015) Acrolein contributes to TRPA1 up-regulation in peripheral and central sensory hypersensitivity following spinal cord injury. J Neurochem 135:987–997. https://doi.org/10.1111/jnc.13352 - PubMed
  152. Park J-H, Ju YH, Choi JW et al (2019) Newly developed reversible MAO-B inhibitor circumvents the shortcomings of irreversible inhibitors in Alzheimer’s disease. Sci Adv 5:eaav0316. https://doi.org/10.1126/sciadv.aav0316 - PubMed
  153. Paslawski T, Knaus E, Iqbal N, Coutts R, Baker G (2001) β-Phenylethylidenehydrazine, a novel inhibitor of GABA transaminase. Drug Dev Res 54:35–39 - PubMed
  154. Paslawski TM, Sloley BD, Baker GB (1995) Effects of the MAO inhibitor phenelzine on glutamine and GABA concentrations in rat brain. Prog Brain Res 106:181–186 - PubMed
  155. Patek DR, Hellerman L (1974) Mitochondrial monoamine oxidase. Mechanism of inhibition by phenylhydrazine and by aralkylhydrazines. Role of enzymatic oxidation. J Biol Chem 249:2373–2380 - PubMed
  156. Perluigi M, Coccia R, Butterfield DA (2012) 4-Hydroxy-2-nonenal, a reactive product of lipid peroxidation, and neurodegenerative diseases: a toxic combination illuminated by redox proteomics studies. Antioxid Redox Signal 17:1590–1609. https://doi.org/10.1089/ars.2011.4406 - PubMed
  157. Phani S, Loike JD, Przedborski S (2012) Neurodegeneration and inflammation in Parkinson’s disease. Parkinsonism Relat Disord 18(Suppl 1):S207–S209. https://doi.org/10.1016/s1353-8020(11)70064-5 - PubMed
  158. Popov N, Matthies H (1969) Some effects of monoamine oxidase inhibitors on the metabolism of gamma-aminobutyric acid in rat brain. J Neurochem 16:899–907 - PubMed
  159. Potter LE, Doolen S, Mifflin K, Tenorio G, Baker G, Taylor BK, Kerr BJ (2018) Antinociceptive effects of the antidepressant phenelzine are mediated by context-dependent inhibition of neuronal responses in the dorsal horn. Neuroscience 383:205–215. https://doi.org/10.1016/j.neuroscience.2018.04.047 - PubMed
  160. Potter LE, Paylor JW, Suh JS et al (2016) Altered excitatory-inhibitory balance within somatosensory cortex is associated with enhanced plasticity and pain sensitivity in a mouse model of multiple sclerosis. J Neuroinflamm 13:142–142. https://doi.org/10.1186/s12974-016-0609-4 - PubMed
  161. Practico D (2008) Oxidative stress hypothesis in Alzheimer’s disease: a reappraisal. Trends Pharmacol Sci 29(12):609–615 - PubMed
  162. Quartey MO, Nyarko JNK, Pennington PR, Heistad RM, Klassen PC, Baker GB, Mousseau DD (2018) Alzheimer disease and selected risk factors disrupt a co-regulation of monoamine oxidase-A/B in the hippocampus, but not in the cortex. Front Neurosci 12:419. https://doi.org/10.3389/fnins.2018.00419 - PubMed
  163. Reed TT (2011) Lipid peroxidation and neurodegenerative disease. Free Radic Biol Med 51:1302–1319. https://doi.org/10.1016/j.freeradbiomed.2011.06.027 - PubMed
  164. Reinikainen KJ, Paljarvi L, Halonen T, Malminen O, Kosma VM, Laakso M, Riekkinen PJ (1988) Dopaminergic system and monoamine oxidase-B activity in Alzheimer’s disease. Neurobiol Aging 9:245–252 - PubMed
  165. Ribaudo G, Bortoli M, Pavan C, Zagotto G, Orian L (2020) Antioxidant potential of psychotropic drugs: from clinical evidence to in vitro and in vivo assessment and toward a new challenge for in silico molecular design. Antioxidants. https://doi.org/10.3390/antiox9080714 - PubMed
  166. Riederer P, Danielczyk W, Grunblatt E (2004) Monoamine oxidase-B inhibition in Alzheimer’s disease. Neurotoxicology 25:271–277 - PubMed
  167. Riederer P, Konradi C, Schay V et al (1987) Localization of MAO-A and MAO-B in human brain: a step in understanding the therapeutic action of L-deprenyl. Adv Neurol 45:111–118 - PubMed
  168. Robinson DS, Cooper TB, Jindal SP, Corcella J, Lutz T (1985) Metabolism and pharmacokinetics of phenelzine: lack of evidence for acetylation pathway in humans. J Clin Psychopharmacol 5:333–337 - PubMed
  169. Romano A, Serviddio G, Calcagnini S, Villani R, Giudetti AM, Cassano T, Gaetani S (2017) Linking lipid peroxidation and neuropsychiatric disorders: focus on 4-hydroxy-2-nonenal. Free Radic Biol Med 111:281–293. https://doi.org/10.1016/j.freeradbiomed.2016.12.046 - PubMed
  170. Sa JM, Barros MC, Melo MR et al (2019) Endogenous hydrogen peroxide affects antidiuresis to cholinergic activation in the medial septal area. Neurosci Lett 694:51–56 - PubMed
  171. Salmi M, Jalkanen S (2001) VAP-1: an adhesin and an enzyme. Trends Immunnol 22(4):211–216. https://doi.org/10.1016/s1471-4906(01)01870-1 - PubMed
  172. Saura J, Luque JM, Cesura AM et al (1994) Increased monoamine oxidase B activity in plaque-associated astrocytes of Alzheimer brains revealed by quantitative enzyme radioautography. Neuroscience 62:15–30. https://doi.org/10.1016/0306-4522(94)90311-5 - PubMed
  173. Schain M, Kreisl WC (2017) Neuroinflammation in neurodegenerative disorders-a review. Curr Neurol Neurosci Rep 17:25. https://doi.org/10.1007/s11910-017-0733-2 - PubMed
  174. Schedin-Weiss S, Inoue M, Hromadkova L et al (2017) Monoamine oxidase B is elevated in Alzheimer disease neurons, is associated with γ-secretase and regulates neuronal amyloid β-peptide levels. Alzheimers Res Ther 9:57. https://doi.org/10.1186/s13195-017-0279-1 - PubMed
  175. Schneider LS, Mangialasche F, Andreasen N et al (2014) Clinical trials and late-stage drug development for Alzheimer’s disease: an appraisal from 1984 to 2014. J Intern Med 275:251–283. https://doi.org/10.1111/joim.12191 - PubMed
  176. Schwartz-Bloom RD, Sah R (2001) γ-Aminobutyric acid neurotransmission and cerebral ischemia. J Neurochem 77:353–371 - PubMed
  177. Selkoe DJ (2001) Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev 81:741–766 - PubMed
  178. Serra JA, Dominguez RO, Marschoff ER, Guareschi EM, Famulari AL, Boveris A (2009) Systemic oxidative stress associated with the neurological diseases of aging. Neurochem Res 34:2122–2132. https://doi.org/10.1007/s11064-009-9997-5 - PubMed
  179. Shadfar S, Kim Y-G, Katila N et al (2018) Neuroprotective effects of antidepressants via upregulation of neurotrophic factors in the MPTP Model of Parkinson’s disease. Mol Neurobiol 55:554–566. https://doi.org/10.1007/s12035-016-0342-0 - PubMed
  180. Shamoto-Nagai M, Maruyama W, Hashizume Y, Yoshida M, Osawa T, Riederer P, Naoi M (2007) In parkinsonian substantia nigra, α-synuclein is modified by acrolein, a lipid-peroxidation product, and accumulates in the dopamine neurons with inhibition of proteasome activity. J Neural Transm 114:1559–1567. https://doi.org/10.1007/s00702-007-0789-2 - PubMed
  181. Shanahan P, O’Sullivan J, Tipton KF, Kinsella GK, Ryan BJ, Henehan GTM (2019) Theobromine and related methylxanthines as inhibitors of Primary Amine Oxidase. J Food Biochem 43:e12697. https://doi.org/10.1111/jfbc.12697 - PubMed
  182. Sheehan DV, Ballenger J, Jacobsen G (1980) Treatment of endogenous anxiety with phobic, hysterical, and hypochondriacal symptoms. Arch Gen Psychiatry 37:51–59 - PubMed
  183. Shemyakov SE (2001) Monoamine oxidase activity, lipid peroxidation, and morphological changes in human hypothalamus during aging. Bull Exp Biol Med 131:586–588 - PubMed
  184. Sherif F, Gottfries CG, Alafuzoff I, Oreland L (1992) Brain gamma-aminobutyrate aminotransferase (GABA-T) and monoamine oxidase (MAO) in patients with Alzheimer’s disease. J Neural Transm Parkinson Dis Dement Sect 4:227–240 - PubMed
  185. Shi R, Page JC, Tully M (2015) Molecular mechanisms of acrolein-mediated myelin destruction in CNS trauma and disease. Free Radic Res 49:888–895. https://doi.org/10.3109/10715762.2015.1021696 - PubMed
  186. Shi Y, Sun W, McBride JJ, Cheng JX, Shi R (2011) Acrolein induces myelin damage in mammalian spinal cord. J Neurochem 117:554–564. https://doi.org/10.1111/j.1471-4159.2011.07226.x - PubMed
  187. Shuaib A, Ijaz MS, Miyashita H, Hussain S, Kanthan R (1997) GABA and glutamate levels in the substantia nigra reticulata following repetitive cerebral ischemia in gerbils. Exp Neurol 147:311–315. https://doi.org/10.1006/exnr.1997.6588 - PubMed
  188. Shuaib A, Ijaz S, Hasan S, Kalra J (1992) Gamma-vinyl GABA prevents hippocampal and substantia nigra reticulata damage in repetitive transient forebrain ischemia. Brain Res 590:13–17 - PubMed
  189. Shuaib A, Kanthan R (1997) Amplification of inhibitory mechanisms in cerebral ischemia: an alternative approach to neuronal protection. Histol Histopathol 12:185–194 - PubMed
  190. Sinem F, Dildar K, Gokhan E, Melda B, Orhan Y, Filiz M (2010) The serum protein and lipid oxidation marker levels in Alzheimer’s disease and effects of cholinesterase inhibitors and antipsychotic drugs therapy. Curr Alzheimer Res 7:463–469 - PubMed
  191. Singh IN, Gilmer LK, Miller DM, Cebak JE, Wang JA, Hall ED (2013) Phenelzine mitochondrial functional preservation and neuroprotection after traumatic brain injury related to scavenging of the lipid peroxidation-derived aldehyde 4-hydroxy-2-nonenal. J Cereb Blood Flow Metab 33:593–599. https://doi.org/10.1038/jcbfm.2012.211 - PubMed
  192. Song MS, Baker GB, Dursun SM, Todd KG (2010) The antidepressant phenelzine protects neurons and astrocytes against formaldehyde-induced toxicity. J Neurochem 114:1405–1413. https://doi.org/10.1111/j.1471-4159.2010.06857.x - PubMed
  193. Song MS, Matveychuk D, MacKenzie EM, Duchcherer M, Mousseau DD, Baker GB (2013) An update on amine oxidase inhibitors: multifaceted drugs. Prog Neuropsychopharmacol Biol Psychiatry 44:118–124. https://doi.org/10.1016/j.pnpbp.2013.02.001 - PubMed
  194. Sowa B, Knaus E, Todd K, Davood A, Baker G (2003) Biochemical activity of 4-fluorophenylethylidenehydrazine and its potential as a neuroprotectant in cerebral ischemia. J Neurochem 85(Suppl 1):10 - PubMed
  195. Sowa B, Rauw G, Davood A, Fassihi A, Knaus E, Baker G (2005) Design and evaluation of phenyl substituted analogs of beta-phenylethylidenehydrazine. Bioorg Med Chem 13(14):4389–4395 - PubMed
  196. Sowa BN, Todd KG, Tanay VAMI, Holt A, Baker GB (2004) Amine oxidase inhibitors and development of neuroprotective drugs. Curr Neuropharmacol 2:153–168 - PubMed
  197. Sparks DL, Woeltz VM, Markesbery WR (1991) Alterations in brain monoamine oxidase activity in aging, Alzheimer’s disease, and Pick’s disease. Arch Neurol 48:718–721 - PubMed
  198. Stolen CM, Yegukin GG, Kurkijarvi R, Bono P, Alitalo K, Jalkanen S (2004) Origins of serum semicarbazide-sensitive amine oxidase. Circ Res 95:50–57. https://doi.org/10.1161/01.res.0000134630.68877.2f - PubMed
  199. Stumm R, Culmsee C, Schafer MK, Krieglstein J, Weihe E (2001) Adaptive plasticity in tachykinin and tachykinin receptor expression after focal cerebral ischemia is differentially linked to GABAergic and glutamatergic cerebrocortical circuits and cerebrovenular endothelium. J Neurosci 21:798–811. https://doi.org/10.1523/jneurosci.21-03-00798.2001 - PubMed
  200. Sturm S, Forsberg A, Nave S et al (2017) Positron emission tomography measurement of brain MAO-B inhibition in patients with Alzheimer’s disease and elderly controls after oral administration of sembragiline. Eur J Nucl Med Imaging 44:382–391 - PubMed
  201. Sugamura K, Keaney JF Jr (2011) Reactive oxygen species in cardiovascular disease. Free Radic Biol Med 51:978–992. https://doi.org/10.1016/j.freeradbiomed.2011.05.004 - PubMed
  202. Sultana R, Perluigi M, Butterfield DA (2013) Lipid peroxidation triggers neurodegeneration: a redox proteomics view into the Alzheimer disease brain. Free Radic Biol Med 62:157–169. https://doi.org/10.1016/j.freeradbiomed.2012.09.027 - PubMed
  203. Sydserff SG, Cross AJ, Murray TK, Jones JA, Green AR (2000) Clomethiazole is neuroprotective in models of global and focal cerebral ischemia when infused at doses producing clinically relevant plasma concentrations. Brain Res 862:59–62. https://doi.org/10.1016/s0006-8993(00)02071-0 - PubMed
  204. Szökő É, Tábi T, Riederer P, Vécsei L, Magyar K (2018) Pharmacological aspects of the neuroprotective effects of irreversible MAO-B inhibitors, selegiline and rasagiline, in Parkinson’s disease. J Neural Transm 125:1735–1749. https://doi.org/10.1007/s00702-018-1853-9 - PubMed
  205. Tabi T, Vecsel L, Youdim MB et al (2020) Selegiline: a molecule with innovative potential. J Neural Transm 127:831–842 - PubMed
  206. Tanay VA, Todd KG, Baker GB (2002) Phenylethylidenehydrazine, a novel GABA-T inhibitor, rescues neurons from cerebral ischemia. In: Proceedings of the 23rd congress of the Collegium Internationale Neuropsychopharmacologicum Montreal, Canada - PubMed
  207. Tanzi RE, Bertram L (2005) Twenty years of the Alzheimer’s disease amyloid hypothesis: a genetic perspective. Cell 120:545–555. https://doi.org/10.1016/j.cell.2005.02.008 - PubMed
  208. Taso OV, Philippou A, Moustogiannis A, Zevolis E, Koutsilieris M (2019) Lipid peroxidation products and their role in neurodegenerative diseases. Ann Res Hosp. https://doi.org/10.21037/arh.2018.12.02 - PubMed
  209. Tatton W, Chalmers-Redman R, Tatton N (2003) Neuroprotection by deprenyl and other propargylamines: glyceraldehyde-3-phosphate dehydrogenase rather than monoamine oxidase B. J Neural Transm 110:509–515. https://doi.org/10.1007/s00702-002-0827-z - PubMed
  210. Tipton KF (1971) The reaction of monoamine oxidase with phenethylhydrazine. Biochem J 121:33P-34P - PubMed
  211. Tipton KF (1972) Inhibition of monoamine oxidase by substituted hydrazines. Biochem J 128:913–919 - PubMed
  212. Tipton KF, Spires IP (1972) Oxidation of 2-phenylethylhydrazine by monoamine oxidase. Biochem Pharmacol 21:268–270 - PubMed
  213. Todd KG, Baker GB (1995) GABA-elevating effects of the antidepressant/antipanic drug phenelzine in brain: effects of pretreatment with tranylcypromine, (−)-deprenyl and clorgyline. J Affect Disord 35:125–129 - PubMed
  214. Todd KG, Baker GB (2008) Neurochemical effects of the monoamine oxidase inhibitor phenelzine on brain GABA and alanine: a comparison with vigabatrin. J Pharm Pharm Sci 11:14s–21s - PubMed
  215. Todd KG, Banigesh AI, Baker GB, Coutts RT, Shuaib A (1999) Phenylethylidenehydrazine, a novel GABA-T inhibitor, has neuroprotective actions in transient global ischemia. J Neurochem 73(Suppl. S202B) - PubMed
  216. Troubat R, Barone P, Leman S et al (2020) Neuroinflammation and depression: a review. Eur J Neurosci. https://doi.org/10.1111/ejn.14720 - PubMed
  217. Tully M, Tang J, Zheng L et al (2018) Systemic acrolein elevations in mice with experimental autoimmune encephalomyelitis and patients with multiple sclerosis. Front Neurol 9:420. https://doi.org/10.3389/fneur.2018.00420 - PubMed
  218. Uchida K, Kanematsu M, Saka K et al (1998) Protein-bound acrolein: potential markers for oxidative stress. Proc Natl Acad Sci USA 95:4882–4887 - PubMed
  219. Unzeta M, Solé M, Boada M, Hernández M (2007) Semicarbazide-sensitive amine oxidase (SSAO) and its possible contribution to vascular damage in Alzheimer’s disease. J Neural Transm 114:857–862. https://doi.org/10.1007/s00702-007-0701-0 - PubMed
  220. Valente T, Gella A, Solé M, Durany N, Unzeta M (2012) Immunohistochemical study of semicarbazide-sensitive amine oxidase/vascular adhesion protein-1 in the hippocampal vasculature: pathological synergy of Alzheimer’s disease and diabetes mellitus. J Neurosci Res 90:1989–1996. https://doi.org/10.1002/jnr.23092 - PubMed
  221. Volchegorskii IA, Shemyakov SE, Turygin VV, Malinovskaya NV (2001) Comparative analysis of age-related changes in activities of monoamine oxidase-B and antioxidant defense enzymes in various structures of human brain. Bull Exp Biol Med 132:760–762 - PubMed
  222. Wang W, Gao C, Hou XY, Liu Y, Zong YY, Zhang GY (2004) Activation and involvement of JNK1/2 in hydrogen peroxide-induced neurotoxicity in cultured rat cortical neurons. Acta Pharmacol Sin 25:630–636 - PubMed
  223. Wassef A, Baker J, Kochan LD (2003) GABA and schizophrenia: a review of basic science and clinical studies. J Clin Psychopharmacol 23:601–640. https://doi.org/10.1097/01.jcp.0000095349.32154.a5 - PubMed
  224. Williams T, Lynn B, Markesbery W, Lovell M (2006) Increased levels of 4-hydroxynonenal and acrolein, neurotoxic markers of lipid peroxidation, in the brain in mild cognitive impairment and early Alzheimer’s disease. Neurobiol Aging 27:1094–1099. https://doi.org/10.1016/j.neurobiolaging.2005.06.004 - PubMed
  225. Williams T, McCaul M, Schwarzer G, Cipriani A, Stein DJ, Ipser J (2020) Pharmacological treatments for social anxiety disorder in adults: a systematic review and network meta-analysis. Acta Neuropsychiatr 32:169–176. https://doi.org/10.1017/neu.2020.6 - PubMed
  226. Wood JA, Wood PL, Ryan R, Graff-Radford NR, Pilapil C, Robitaille Y, Quirion R (1993) Cytokine indices in Alzheimer’s temporal cortex: no changes in mature IL-1 beta or IL-1RA but increases in the associated acute phase proteins IL-6, alpha 2-macroglobulin and C-reactive protein. Brain Res 629:245–252. https://doi.org/10.1016/0006-8993(93)91327-o - PubMed
  227. Wood P (2006) Neurodegeneration and aldehyde load: from concept to therapeutics. J Psychiatry Neurosci 31:296–297 - PubMed
  228. Wood P, Cebak J, Baker G (2020) Metabolomics of rat brain after treatment with phenelzine: high-resolution mass spectrometric demonstration of increased brain levels of N-acetyl amino acids. Neurol Neurobiol. https://doi.org/10.31487/j.NNB.2020.03.03 - PubMed
  229. Wood P, Khan M, Moskal J (2007a) The concept of “aldehyde load” in neurodegenerative mechanisms: cytotoxicity of the polyamine degradation products hydrogen peroxide, acrolein, 3-aminopropanal, 3-acetamidopropanal and 4-aminobutanal in a retinal ganglion cell line. Brain Res 1145:150–156. https://doi.org/10.1016/j.brainres.2006.10.004 - PubMed
  230. Wood P, Wood J (2013) Thiol metabolism in schizophrenia: current status. Curr Psychiatry Rev 9:136–147 - PubMed
  231. Wood PL (2003) Microglia: roles of microglia in chronic neurodegenerative diseases. In: Wood PL (ed) Neuroinflammation. Mechanisms and management, 2nd edn. Humana Press, Totowa, pp 3–27 - PubMed
  232. Wood PL, Khan MA, Kulow SR, Mahmood SA, Moskal JR (2006a) Neurotoxicity of reactive aldehydes: the concept of “aldehyde load” as demonstrated by neuroprotection with hydroxylamines. Brain Res 1095:190–199. https://doi.org/10.1016/j.brainres.2006.04.038 - PubMed
  233. Wood PL, Khan MA, Moskal JR (2007b) Cellular thiol pools are responsible for sequestration of cytotoxic reactive aldehydes: central role of free cysteine and cysteamine. Brain Res 1158:158–163. https://doi.org/10.1016/j.brainres.2007.05.007 - PubMed
  234. Wood PL, Khan MA, Moskal JR, Todd KG, Tanay VA, Baker G (2006b) Aldehyde load in ischemia-reperfusion brain injury: neuroprotection by neutralization of reactive aldehydes with phenelzine. Brain Res 1122:184–190. https://doi.org/10.1016/j.brainres.2006.09.003 - PubMed
  235. Xiao M, Zhong H, Xia L, Tao Y, Yin H (2017) Pathophysiology of mitochondrial lipid oxidation: role of 4-hydroxynonenal (4-HNE) and other bioactive lipids in mitochondria. Free Radic Biol Med 111:316–327. https://doi.org/10.1016/j.freeradbiomed.2017.04.363 - PubMed
  236. Xu L, Hilliard B, Carmody RJ, Tsabary G, Shin H (2003) Arginase and autoimmune inflammation in the central nervous system. Immunology 110:141–148 - PubMed
  237. Yadav UC, Ramana KV (2013) Regulation of NF-κB-induced inflammatory signaling by lipid peroxidation-derived aldehydes. Oxid Med Cell Longev 2013:690545. https://doi.org/10.1155/2013/690545 - PubMed
  238. Yang L (2004) Calcineurin-mediated BAD Ser155 dephosphorylation in ammonia-induced apoptosis of cultured rat hippocampal neurons. Neurosci Lett 357:73–75. https://doi.org/10.1016/j.neulet.2003.12.032 - PubMed
  239. Yang L, Omori K, Omori K, Otani H, Suzukawa J, Inagaki C (2003) GABAC receptor agonist suppressed ammonia-induced apoptosis in cultured rat hippocampal neurons by restoring phosphorylated BAD level. J Neurochem 87:791–800. https://doi.org/10.1046/j.1471-4159.2003.02069.x - PubMed
  240. Yoon B-E, Woo J, Chun Y-E et al (2014) Glial GABA, synthesized by monoamine oxidase B, mediates tonic inhibition. J Physiol 592(22):4951–4968 - PubMed
  241. Youdim MB, Amit T, Bar-Am O, Weinreb O, Yogev-Falach M (2006) Implications of co-morbidity for etiology and treatment of neurodegenerative diseases with multifunctional neuroprotective-neurorescue drugs; ladostigil. Neurotox Res 10:181–192 - PubMed
  242. Youdim MBH, Bakhle YS (2006) Monoamine oxidase: isoforms and inhibitors in Parkinson’s disease and depressive illness. Br J Pharmacol 147(Suppl 1):S287–S296. https://doi.org/10.1038/sj.bjp.0706464 - PubMed
  243. Young LT (2002) Neuroprotective effects of antidepressant and mood stabilizing drugs. J Psychiatry Neurosci 27:8–9 - PubMed
  244. Yu PH, Wright S, Fan EH, Lun ZR, Gubisne-Harberle D (2003) Physiological and pathological implications of semicarbazide-sensitive amine oxidase. Biochim Biophys Acta 1647:193–199 - PubMed
  245. Zarkovic K (2003) 4-Hydroxynonenal and neurodegenerative diseases. Mol Asp Med 24:293–303. https://doi.org/10.1016/S0098-2997(03)00024-4 - PubMed
  246. Zhang W, Davidson JR (2007) Post-traumatic stress disorder: an evaluation of existing pharmacotherapies and new strategies. Expert Opin Pharmacother 8:1861–1870. https://doi.org/10.1517/14656566.8.12.1861 - PubMed
  247. Zuliani G, Ranzini M, Guerra G et al (2007) Plasma cytokines profile in older subjects with late onset Alzheimer’s disease or vascular dementia. J Psychiatr Res 41:686–693. https://doi.org/10.1016/j.jpsychires.2006.02.008 - PubMed

Publication Types

Grant support