Display options
Share it on

Environ Sci Pollut Res Int. 2022 Jan;29(1):1199-1209. doi: 10.1007/s11356-021-15722-4. Epub 2021 Aug 04.

Treatment of cosmetic industry wastewater by flotation with Moringa oleifera Lam. and aluminum sulfate and toxicity assessment of the treated wastewater.

Environmental science and pollution research international

Nathalia Santos Araújo, Nathália Ferreira Souza, João Marcos de Lima-Faria, Andressa Tuane Santana Paz, Paulo Sérgio Scalize, Simone Maria Teixeira de Sabóia-Morais, Humberto Carlos Ruggeri Junior, Edemilson Cardoso da Conceição

Affiliations

  1. Bioproducts Research, Development and Innovation Laboratory (PD&I Bioprodutos), Faculty of Pharmacy, Federal University of Goiás, Road, Goiânia, 240, Brazil. [email protected].
  2. Bioproducts Research, Development and Innovation Laboratory (PD&I Bioprodutos), Faculty of Pharmacy, Federal University of Goiás, Road, Goiânia, 240, Brazil.
  3. Cellular Behavior Laboratory, Institute of Biological Sciences, Federal University of Goiás, Campus 2, Goiânia, Brazil.
  4. Water Analysis Laboratory, School of Civil and Environmental Engineering, Federal University of Goiás, University Avenue, Goiânia, Brazil.

PMID: 34347241 DOI: 10.1007/s11356-021-15722-4

Abstract

The production of personal hygiene and body products generates wastewater with a high load of surfactants, a high chemical oxygen demand (COD), and abundant oils and greases. Aluminum sulfate (AS) and two solutions of natural coagulant from Moringa oleifera Lam. seeds prepared with a 1M NaCl solution and 1.5M NaCl solution were used. Aluminum sulfate, Moringa oleifera Lam. in 1M NaCl, and Moringa oleifera Lam. in 1.5M NaCl solutions reduced turbidity at rates 94.48%, 98.07%, and 97.87%; reduced COD at rates 46.36%, 49.15%, and 42.7%; and reduced oil and grease at rates 98.72%, 78.65%, and 97.41%, respectively. Mutagenicity tests with guppies showed a lower toxicity of Moringa oleifera Lam. extract compared with aluminum sulfate. This work shows that Moringa oleifera Lam. extract has high potential for use as an alternative to aluminum sulfate; therefore, this study will contribute to proposals for the sustainable treatment of effluents from the cosmetic industry.

© 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Keywords: Chemical coagulation; Cytotoxicity; Dissolved air flotation; Natural product; Poecilia reticulata; Wastewater treatment

References

  1. Ahmad AL, Sumathi S, Hameed BH (2006) Coagulation of residue oil and suspended solid in palm oil mill effluent by chitosan, alum and PAC. Chem Eng J 118:99–105. https://doi.org/10.1016/j.cej.2006.02.001 - PubMed
  2. Almeida SDS, Rocha TL, Qualhato G et al (2019) Acute exposure to environmentally relevant concentrations of benzophenone-3 induced genotoxicity in Poecilia reticulata. Aquat Toxicol 216:105293. https://doi.org/10.1016/j.aquatox.2019.105293 - PubMed
  3. Aloui F, Kchaou S, Sayadi S (2009) Physicochemical treatments of anionic surfactants wastewater: effect on aerobic biodegradability. J Hazard Mater 164:353–359. https://doi.org/10.1016/j.jhazmat.2008.08.009 - PubMed
  4. Beltrán-Heredia J, Sánchez-Martín J (2009) Removal of sodium lauryl sulphate by coagulation/flocculation with Moringa oleifera seed extract. J Hazard Mater 164:713–719. https://doi.org/10.1016/j.jhazmat.2008.08.053 - PubMed
  5. Beltrán-Heredia J, Sánchez-Martín J, Muñoz-Serrano A, Peres JA (2012) Towards overcoming TOC increase in wastewater treated with Moringa oleifera seed extract. Chem Eng J 188:40–46. https://doi.org/10.1016/j.cej.2012.02.003 - PubMed
  6. Bhatia S, Othman Z, Ahmad AL (2007) Coagulation–flocculation process for POME treatment using Moringa oleifera seeds extract: optimization studies. Chem Eng J 133:205–212. https://doi.org/10.1016/j.cej.2007.01.034 - PubMed
  7. Bhuptawat H, Folkard GK, Chaudhari S (2007) Innovative physico-chemical treatment of wastewater incorporating Moringa oleifera seed coagulant. J Hazard Mater 142:477–482. https://doi.org/10.1016/j.jhazmat.2006.08.044 - PubMed
  8. Biavatti MW, Marensi V, Leite SN, Reis A (2007) Ethnopharmacognostic survey on botanical compendia for potential cosmeceutic species from Atlantic Forest. Rev Bras 17:640–653. https://doi.org/10.1590/S0102-695X2007000400025 - PubMed
  9. Boroski M, Rodrigues AC, Garcia JC, Sampaio LC, Nozaki J, Hioka N (2009) Combined electrocoagulation and TiO2 photoassisted treatment applied to wastewater effluents from pharmaceutical and cosmetic industries. J Hazard Mater 162:448–454. https://doi.org/10.1016/j.jhazmat.2008.05.062 - PubMed
  10. Boulaadjoul S, Zemmouri H, Bendjama Z, Drouiche N (2018) A novel use of Moringa oleifera seed powder in enhancing the primary treatment of paper mill effluent. Chemosphere 206:142–149. https://doi.org/10.1016/j.chemosphere.2018.04.123 - PubMed
  11. BRASIL (2005) Resolução CONAMA 357, de 17 de março de. Conselho Nacional de Meio Ambiente. Disponível em:< www.mma.gov.br > - PubMed
  12. Brasil (2017) Portaria de Consolidação n° 5, de 28 de setembro de. Consolidação das normas sobre as ações e os serviços de Saúde do Sistema Único de Saúde. Diário Oficial da União. 5 Set 2017 - PubMed
  13. Carballa M, Omil F, Lema JM (2007) Calculation methods to perform mass balances of micropollutants in sewage treatment plants. Application to Pharmaceutical and Personal Care Products (PPCPs). Environ Sci Technol 41:884–890. https://doi.org/10.1021/es061581g - PubMed
  14. Carrasco KR, Tilbury KL, Myers MS (1990) Assessment of the piscine micronucleus test as an in situ biological indicator of chemical contaminant effects. Can J Fish Aquat Sci 47:2123–2136. https://doi.org/10.1139/f90-237 - PubMed
  15. Costa GHG, de Freita CM, Mendes FQ, Mutton MJR (2016) Extrato de sementes de moringa como floculante de caldo de cana-de-açúcar. Pesqui Agropecuária Bras 51:1794–1798. https://doi.org/10.1590/s0100-204x2016001000012 - PubMed
  16. Daughton CG, Ternes TA (1999) Pharmaceuticals and personal care products in the environment: agents of subtle change? Environ Health Perspect 107:907–938. https://doi.org/10.1289/ehp.99107s6907 - PubMed
  17. de Beluci, NCL, GAP M, Miyashiro CS et al (2019) Hybrid treatment of coagulation/flocculation process followed by ultrafiltration in TIO2-modified membranes to improve the removal of reactive black 5 dye. Sci Total Environ 664:222–229. https://doi.org/10.1016/j.scitotenv.2019.01.199 - PubMed
  18. de Melo ED, Mounteer A, Reis E et al (2018) Screening of physicochemical treatment processes for reducing toxicity of hair care products wastewaters. J Environ Manag 212:349–356. https://doi.org/10.1016/j.jenvman.2018.02.036 - PubMed
  19. El-Gohary F, Tawfik A, Mahmoud U (2010) Comparative study between chemical coagulation/precipitation (C/P) versus coagulation/dissolved air flotation (C/DAF) for pre-treatment of personal care products (PCPs) wastewater. Desalination 252:106–112. https://doi.org/10.1016/j.desal.2009.10.016 - PubMed
  20. Fejér J, Kron I, Pellizzeri V, Pľuchtová M, Eliašová A, Campone L, Gervasi T, Bartolomeo G, Cicero N, Babejová A, Konečná M, Sedlák V, Poráčová J, Gruľová D (2019) First report on evaluation of basic nutritional and antioxidant properties of Moringa oleifera Lam. from Caribbean Island of Saint Lucia. Plants 8:537. https://doi.org/10.3390/plants8120537 - PubMed
  21. Fenech M, Chang W, Kirsch-Volders M, Holland N, Bonassi S, Zeiger E, HUman MicronNucleus project (2003) HUMN project: detailed description of the scoring criteria for the cytokinesis-block micronucleus assay using isolated human lymphocyte cultures. Mutat Res Toxicol Environ Mutagen 534:65–75. https://doi.org/10.1016/S1383-5718(02)00249-8 - PubMed
  22. Gu X, Chiang S-H (1999) A novel flotation column for oily water cleanup. Sep Purif Technol 16:193–203. https://doi.org/10.1016/S1383-5866(99)00004-0 - PubMed
  23. Hopkins ZR, Blaney L (2016) An aggregate analysis of personal care products in the environment: Identifying the distribution of environmentally-relevant concentrations. Environ Int 92–93:301–316. https://doi.org/10.1016/j.envint.2016.04.026 - PubMed
  24. Jung Y, Jung Y, Kwon M, Kye H, Abrha YW, Kang JW (2018) Evaluation of Moringa oleifera seed extract by extraction time: effect on coagulation efficiency and extract characteristic. J Water Health 16:904–913. https://doi.org/10.2166/wh.2018.078 - PubMed
  25. Krupińska I (2020) Aluminium drinking water treatment residuals and their toxic impact on human health. Molecules 25:641. https://doi.org/10.3390/molecules25030641 - PubMed
  26. Larsen C, Yu ZH, Flick R, Passeport E (2019) Mechanisms of pharmaceutical and personal care product removal in algae-based wastewater treatment systems. Sci Total Environ 695:133772. https://doi.org/10.1016/j.scitotenv.2019.133772 - PubMed
  27. Lee CS, Robinson J, Chong MF (2014) A review on application of flocculants in wastewater treatment. Process Saf Environ Prot 92:489–508. https://doi.org/10.1016/j.psep.2014.04.010 - PubMed
  28. Metcalf, Eddy (2004) Wastewater engineering: treatment disposal and reuse, 4th edition. Editor McGrew-Hill, New York, p 1878 - PubMed
  29. Nardi IR, Fuzi TP, Del Nery V (2008) Performance evaluation and operating strategies of dissolved-air flotation system treating poultry slaughterhouse wastewater. Resour Conserv Recycl 52:533–544. https://doi.org/10.1016/j.resconrec.2007.06.005 - PubMed
  30. Okuda T, Baes AU, Nishijima W, Okada M (2001) Isolation and characterization of coagulant extracted from moringa oleifera seed by salt solution. Water Res 35:405–410. https://doi.org/10.1016/S0043-1354(00)00290-6 - PubMed
  31. Oulton RL, Kohn T, Cwiertny DM (2010) Pharmaceuticals and personal care products in effluent matrices: a survey of transformation and removal during wastewater treatment and implications for wastewater management. J Environ Monit 12:1956–1978. https://doi.org/10.1039/c0em00068j - PubMed
  32. Parish LC, Crissey JT (1988) Cosmetics: a historical review. Clin Dermatol 6:1–4. https://doi.org/10.1016/0738-081X(88)90024-7 - PubMed
  33. Patil VV, Gogate PR, Bhat AP, Ghosh PK (2020) Treatment of laundry wastewater containing residual surfactants using combined approaches based on ozone, catalyst and cavitation. Sep Purif Technol 239:116594. https://doi.org/10.1016/j.seppur.2020.116594 - PubMed
  34. Peck AM (2006) Analytical methods for the determination of persistent ingredients of personal care products in environmental matrices. Anal Bioanal Chem 386:907–939. https://doi.org/10.1007/s00216-006-0728-3 - PubMed
  35. Pogue AI, Jaber V, Zhao Y, Lukiw WJ (2017) Systemic inflammation in C57BL/6J mice receiving dietary aluminum sulfate; up-regulation of the pro-inflammatory cytokines IL-6 and TNFα, C-reactive protein (CRP) and miRNA-146a in blood serum. J Alzheimer’s Dis Park 7. https://doi.org/10.4172/2161-0460.1000403 - PubMed
  36. Puyol D, Monsalvo VM, Mohedano AF, Sanz JL, Rodriguez JJ (2011) Cosmetic wastewater treatment by upflow anaerobic sludge blanket reactor. J Hazard Mater 185:1059–1065. https://doi.org/10.1016/j.jhazmat.2010.10.014 - PubMed
  37. Qualhato G, Rocha TL, Lima ECO et al (2017) Genotoxic and mutagenic assessment of iron oxide (maghemite-γ-Fe2O3) nanoparticle in the guppy Poecilia reticulata. Chemosphere 183:305–314. https://doi.org/10.1016/j.chemosphere.2017.05.061 - PubMed
  38. Santos TM, Pereira DF, Santana CR, da Silva GF (2011) Estudo do tratamento físico químico da água produzida utilizando Moringa oleifera Lam em comparação ao sulfato de alumínio. Exacta 9:317–322. https://doi.org/10.5585/exacta.v9i3.3073 - PubMed
  39. Stackelberg PE, Furlong ET, Meyer MT, Zaugg SD, Henderson AK, Reissman DB (2004) Persistence of pharmaceutical compounds and other organic wastewater contaminants in a conventional drinking-water-treatment plant. Sci Total Environ 329:99–113. https://doi.org/10.1016/j.scitotenv.2004.03.015 - PubMed
  40. Teixeira CMLL, Kirsten FV, Teixeira PCN (2012) Evaluation of Moringa oleifera seed flour as a flocculating agent for potential biodiesel producer microalgae. J Appl Phycol 24:557–563. https://doi.org/10.1007/s10811-011-9773-1 - PubMed
  41. Vaz LG d L, MRF K, Veit MT et al (2010) Avaliação da eficiência de diferentes agentes coagulantes na remoção de cor e turbidez em efluente de galvanoplastia. Eclética Química 35:45–54. https://doi.org/10.1590/S0100-46702010000400006 - PubMed
  42. Venditti RA (2004) A simple flotation de-inking experiment for the recycling of paper. J Chem Educ 81:693. https://doi.org/10.1021/ed081p693 - PubMed
  43. Violante IMP, Souza IM, Venturini CL, Ramalho AFS, Santos RAN, Ferrari M (2009) Avaliação in vitro da atividade fotoprotetora de extratos vegetais do cerrado de Mato Grosso. Rev Bras 19:452–457. https://doi.org/10.1590/S0102-695X2009000300020 - PubMed
  44. Yapıcıoğlu P, Yeşilnacar MI (2020) Energy cost assessment of a dairy industry wastewater treatment plant. Environ Monit Assess 192:536. https://doi.org/10.1007/s10661-020-08492-y - PubMed
  45. Zhang D, Gersberg RM, Ng WJ, Tan SK (2014) Removal of pharmaceuticals and personal care products in aquatic plant-based systems: a review. Environ Pollut 184:620–639. https://doi.org/10.1016/j.envpol.2013.09.009 - PubMed

Publication Types