Display options
Share it on

Pain. 2022 Jan 01;163(1):146-158. doi: 10.1097/j.pain.0000000000002320.

Antagonism of the mu-delta opioid receptor heterodimer enhances opioid antinociception by activating Src and calcium/calmodulin-dependent protein kinase II signaling.

Pain

Attila Keresztes, Keith Olson, Paul Nguyen, Marissa A Lopez-Pier, Ryan Hecksel, Natalie K Barker, Zekun Liu, Victor Hruby, John Konhilas, Paul R Langlais, John M Streicher

Affiliations

  1. Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States.
  2. Department of Chemistry and Biochemistry, College of Science, University of Arizona, Tucson, AZ, United States.
  3. Medicine, College of Medicine, University of Arizona, Tucson, AZ, United States.
  4. Departments of Physiology and.

PMID: 34252907 PMCID: PMC8688156 DOI: 10.1097/j.pain.0000000000002320

Abstract

ABSTRACT: The opioid receptors are important regulators of pain, reward, and addiction. Limited evidence suggests the mu and delta opioid receptors form a heterodimer (MDOR), which may act as a negative feedback brake on opioid-induced analgesia. However, evidence for the MDOR in vivo is indirect and limited, and there are few selective tools available. We recently published the first MDOR-selective antagonist, D24M, allowing us to test the role of the MDOR in mice. We thus cotreated CD-1 mice with D24M and opioids in tail flick, paw incision, and chemotherapy-induced peripheral neuropathy pain models. D24M treatment enhanced oxymorphone antinociception in all models by 54.7% to 628%. This enhancement could not be replicated with the mu and delta selective antagonists CTAP, naltrindole, and naloxonazine, and D24M had a mild transient effect in the rotarod test, suggesting this increase is selective to the MDOR. However, D24M had no effect on morphine or buprenorphine, suggesting that only specific opioids interact with the MDOR. To find a mechanism, we performed phosphoproteomic analysis on brainstems of mice. We found that the kinases Src and CaMKII were repressed by oxymorphone, which was restored by D24M. We were able to confirm the role of Src and CaMKII in D24M-enhanced antinociception using small molecule inhibitors (KN93 and Src-I1). Together, these results provide direct in vivo evidence that the MDOR acts as an opioid negative feedback brake, which occurs through the repression of Src and CaMKII signal transduction. These results further suggest that MDOR antagonism could be a means to improve clinical opioid therapy.

Copyright © 2021 International Association for the Study of Pain.

References

  1. Neuropharmacology. 2008 Feb;54(2):319-30 - PubMed
  2. Nucleic Acids Res. 2017 Jan 4;45(D1):D1100-D1106 - PubMed
  3. J Biol Chem. 2005 Mar 25;280(12):11152-64 - PubMed
  4. Drug Alcohol Depend. 1994 Jun;35(3):197-202 - PubMed
  5. Exp Neurol. 2021 Jan;335:113512 - PubMed
  6. Neuron. 2018 Apr 4;98(1):90-108.e5 - PubMed
  7. Front Pharmacol. 2020 Jul 15;11:1078 - PubMed
  8. EMBO Mol Med. 2017 Nov;9(11):1521-1536 - PubMed
  9. Nat Methods. 2009 Nov;6(11):786-7 - PubMed
  10. J Pharmacol Exp Ther. 2016 Oct;359(1):82-9 - PubMed
  11. J Med Chem. 2020 Nov 25;63(22):13618-13637 - PubMed
  12. Eur J Pharmacol. 2007 Jul 2;566(1-3):75-82 - PubMed
  13. Sci Signal. 2020 May 05;13(630): - PubMed
  14. J Mol Biol. 2019 Mar 29;431(7):1440-1459 - PubMed
  15. Peptides. 2008 Aug;29(8):1424-31 - PubMed
  16. FASEB J. 2007 Aug;21(10):2455-65 - PubMed
  17. J Neurosci. 2000 Nov 15;20(22):RC110 - PubMed
  18. Mol Psychiatry. 2014 Sep;19(9):986-94 - PubMed
  19. Mol Med Rep. 2018 Jul;18(1):1074-1080 - PubMed
  20. Front Chem. 2015 Jun 24;3:40 - PubMed
  21. Neuroscience. 2004;126(2):415-21 - PubMed
  22. AAPS PharmSciTech. 2011 Dec;12(4):1293-301 - PubMed
  23. J Biol Chem. 2017 Jun 23;292(25):10414-10428 - PubMed
  24. Brain Res Rev. 2009 Apr;60(1):214-25 - PubMed
  25. Br J Pharmacol. 2015 Jan;172(2):642-53 - PubMed
  26. PLoS One. 2019 Jun 6;14(6):e0217371 - PubMed
  27. PLoS One. 2013;8(3):e58362 - PubMed
  28. Front Mol Neurosci. 2019 Nov 29;12:294 - PubMed
  29. J Neurosci Methods. 1994 Jul;53(1):55-63 - PubMed
  30. J Med Chem. 2018 Jul 26;61(14):6075-6086 - PubMed
  31. Biochem Biophys Res Commun. 2014 Jul 18;450(1):906-11 - PubMed
  32. Proc Natl Acad Sci U S A. 2008 Oct 14;105(41):16045-50 - PubMed
  33. Trends Pharmacol Sci. 2003 Apr;24(4):198-205 - PubMed
  34. Nature. 1999 Jun 17;399(6737):697-700 - PubMed
  35. Mol Pharmacol. 2019 Jan;95(1):11-19 - PubMed
  36. J Med Chem. 2015 Aug 13;58(15):5728-41 - PubMed
  37. Front Pharmacol. 2018 Nov 13;9:1240 - PubMed
  38. Mol Cell Proteomics. 2019 Jul;18(7):1363-1381 - PubMed
  39. Nucleic Acids Res. 2019 Jan 8;47(D1):D442-D450 - PubMed
  40. Nucleic Acids Res. 2013 Jan;41(Database issue):D333-7 - PubMed
  41. Pain. 2020 Aug;161(8):1798-1807 - PubMed
  42. Mol Pharmacol. 2003 Nov;64(5):1092-100 - PubMed
  43. Anesthesiology. 2017 Nov;127(5):878-889 - PubMed
  44. Proc Natl Acad Sci U S A. 2005 Dec 27;102(52):19208-13 - PubMed
  45. Mol Pharmacol. 2019 May;95(5):468-474 - PubMed
  46. Brain Struct Funct. 2015 Mar;220(2):677-702 - PubMed
  47. Neuropharmacology. 2011 Jan;60(1):58-65 - PubMed
  48. Proc Natl Acad Sci U S A. 2013 Jul 16;110(29):12072-7 - PubMed
  49. Anal Chem. 2014 Aug 19;86(16):8312-20 - PubMed
  50. Cell Calcium. 2019 Sep;82:102063 - PubMed
  51. Sci Signal. 2010 Jul 20;3(131):ra54 - PubMed
  52. Nucleic Acids Res. 2015 Jul 1;43(W1):W543-6 - PubMed
  53. J Pain. 2020 Jan - Feb;21(1-2):146-160 - PubMed

Publication Types

Grant support