Display options
Share it on

Stem Cells Transl Med. 2021 Nov;10(11):1561-1574. doi: 10.1002/sctm.21-0008. Epub 2021 Aug 16.

IFN-γ and PPARδ influence the efficacy and retention of multipotent adult progenitor cells in graft vs host disease.

Stem cells translational medicine

Fiona Carty, Hazel Dunbar, Ian J Hawthorne, Anthony E Ting, Samantha R Stubblefield, Wouter Van't Hof, Karen English

Affiliations

  1. Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland.
  2. Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland.
  3. Athersys, Inc, Cleveland, Ohio, USA.
  4. Cleveland Cord Blood Center, Cleveland, Ohio, USA.

PMID: 34397170 PMCID: PMC8550699 DOI: 10.1002/sctm.21-0008

Abstract

Cell-based therapy for the treatment of inflammatory disorders has focused on the application of mesenchymal stromal cells (MSCs) and multipotent adult progenitor cells (MAPCs). Despite the recent positive findings in industry-sponsored clinical trials of MSCs and MAPCs for graft vs host disease (GvHD), cell therapy is efficacious in some but not all patients, highlighting the need to identify strategies to enhance cell-based therapeutic efficacy. Here, we demonstrate the capacity for interferon (IFN)-γ licensing to enhance human MAPC efficacy and retention following early administration in a humanized mouse model of acute GvHD (aGvHD). Activation of the nuclear receptor peroxisome proliferator-activated receptor delta (PPARδ) negatively influenced the retention and efficacy of human MAPCs as well as IFN-γ-licensed MAPCs in the aGvHD model. PPARδ antagonism significantly enhanced the efficacy of human MAPCs when administered early in the humanized aGvHD model. COX-2 expression in human MAPC was significantly decreased in IFN-γ licensed MAPCs exposed to a PPARδ agonist. Importantly, MAPC exposure to the PPARδ antagonist in the presence of a COX-2 inhibitor indomethacin before administration significantly reduced the efficacy of PPARδ antagonized MAPCs in the aGvHD humanized mouse model. This is the first study to demonstrate the importance of PPARδ in human MAPC efficacy in vivo and highlights the importance of understanding the disease microenvironment in which cell-based therapies are to be administered. In particular, the presence of PPARδ ligands may negatively influence MAPC or MSC therapeutic efficacy.

© 2021 The Authors. STEM CELLS TRANSLATIONAL MEDICINE published by Wiley Periodicals LLC on behalf of AlphaMed Press.

Keywords: COX-2; IFN-γ; PPARδ; graft vs host disease; in vivo biodistribution; mesenchymal stromal cells; multipotent adult progenitor cells

References

  1. Cell Death Differ. 2014 Mar;21(3):388-96 - PubMed
  2. J Immunol. 2013 May 1;190(9):4542-52 - PubMed
  3. JCI Insight. 2019 Jul 25;5: - PubMed
  4. Nucleic Acids Res. 2015 May 26;43(10):5033-51 - PubMed
  5. Stem Cell Res Ther. 2015 Sep 16;6:176 - PubMed
  6. Blood. 2005 Feb 15;105(4):1815-22 - PubMed
  7. Stem Cells. 2016 Jul;34(7):1836-45 - PubMed
  8. Cell Stem Cell. 2018 Jun 01;22(6):824-833 - PubMed
  9. Sci Transl Med. 2017 Nov 15;9(416): - PubMed
  10. Immunol Cell Biol. 2013 Jan;91(1):19-26 - PubMed
  11. Clin Exp Immunol. 2013 May;172(2):333-48 - PubMed
  12. Cell Stem Cell. 2008 Feb 7;2(2):141-50 - PubMed
  13. Eur J Immunol. 2008 Jun;38(6):1745-55 - PubMed
  14. Stem Cell Res Ther. 2021 Apr 14;12(1):238 - PubMed
  15. Stem Cell Rev Rep. 2014 Jun;10(3):351-75 - PubMed
  16. Cell Rep. 2020 Feb 11;30(6):1923-1934.e4 - PubMed
  17. Scand J Immunol. 2004 Sep;60(3):307-15 - PubMed
  18. Clin Exp Immunol. 2017 Apr;188(1):1-11 - PubMed
  19. Cytotherapy. 2012 Feb;14(2):147-52 - PubMed
  20. Int J Biochem Cell Biol. 2012 Nov;44(11):2044-50 - PubMed
  21. Cell. 1995 Dec 15;83(6):835-9 - PubMed
  22. Stem Cells. 2015 Jun;33(6):1892-901 - PubMed
  23. Int J Mol Sci. 2018 Oct 26;19(11): - PubMed
  24. Front Immunol. 2018 Apr 23;9:645 - PubMed
  25. Eur J Immunol. 2014 Feb;44(2):480-8 - PubMed
  26. J Allergy Clin Immunol. 2017 May;139(5):1667-1676 - PubMed
  27. Biol Blood Marrow Transplant. 2020 May;26(5):835-844 - PubMed
  28. Stem Cells. 2018 Apr;36(4):602-615 - PubMed
  29. EBioMedicine. 2015 Dec 24;4:62-73 - PubMed
  30. Front Immunol. 2012 Nov 27;3:345 - PubMed
  31. Cell Metab. 2008 Jun;7(6):485-95 - PubMed
  32. Cell Transplant. 2013;22(10):1915-28 - PubMed
  33. Lancet. 2004 May 1;363(9419):1439-41 - PubMed
  34. Nat Rev Immunol. 2002 Oct;2(10):748-59 - PubMed
  35. Transpl Immunol. 2021 Apr;65:101373 - PubMed
  36. Cell Rep. 2020 Mar 17;30(11):3806-3820.e6 - PubMed
  37. Biol Blood Marrow Transplant. 2020 May;26(5):845-854 - PubMed
  38. Stem Cells Dev. 2013 Nov 15;22(22):3003-14 - PubMed
  39. Stem Cells Dev. 2016 Sep 15;25(18):1342-54 - PubMed
  40. Front Immunol. 2019 Aug 28;10:1952 - PubMed
  41. Biol Blood Marrow Transplant. 2020 May;26(5):e89-e91 - PubMed
  42. Biomed Res Int. 2013;2013:215283 - PubMed
  43. Stem Cells. 2019 Aug;37(8):1119-1125 - PubMed
  44. Blood. 2009 Jul 16;114(3):693-701 - PubMed
  45. Cytokine Growth Factor Rev. 2008 Oct-Dec;19(5-6):383-94 - PubMed
  46. Stem Cells. 2006 Feb;24(2):386-98 - PubMed
  47. Nat Med. 2009 Jan;15(1):42-9 - PubMed
  48. Ann Rheum Dis. 2016 Dec;75(12):2166-2174 - PubMed
  49. Immunol Lett. 2007 Jun 15;110(2):91-100 - PubMed
  50. Cancers (Basel). 2019 Jul 25;11(8): - PubMed
  51. Stem Cell Res Ther. 2018 Feb 26;9(1):45 - PubMed
  52. Cell Immunol. 2009;255(1-2):55-60 - PubMed
  53. Mol Ther. 2015 Nov;23(11):1783-1793 - PubMed
  54. Cell Metab. 2008 Jun;7(6):496-507 - PubMed

Publication Types