Display options
Share it on

Stem Cell Reports. 2021 Sep 14;16(9):2089-2098. doi: 10.1016/j.stemcr.2021.07.022. Epub 2021 Aug 26.

CHD4 ensures stem cell lineage fidelity during skeletal muscle regeneration.

Stem cell reports

Krishnamoorthy Sreenivasan, Alejandra Rodríguez-delaRosa, Johnny Kim, Diana Mesquita, Jessica Segalés, Pablo Gómez-Del Arco, Isabel Espejo, Alessandro Ianni, Luciano Di Croce, Frederic Relaix, Juan Miguel Redondo, Thomas Braun, Antonio L Serrano, Eusebio Perdiguero, Pura Muñoz-Cánoves

Affiliations

  1. Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.
  2. Department of Experimental & Health Sciences, University Pompeu Fabra (UPF), CIBERNED, 08003 Barcelona, Spain.
  3. Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; German Center for Cardiovascular Research (DZHK), Rhine Main, Germany.
  4. Institute of Rare Diseases Research, Instituto de Salud Carlos III (ISCIII), 28220 Majadahonda, Madrid, Spain; Gene Regulation in Cardiovascular Remodelling & Inflammation Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain.
  5. Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, 08003 Barcelona, Spain.
  6. Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, 08003 Barcelona, Spain; Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; ICREA, 08010 Barcelona, Spain.
  7. Univ Paris Est Creteil, INSERM, EnvA, EFS, AP-HP, IMRB, F-94010 Creteil, France.
  8. Gene Regulation in Cardiovascular Remodelling & Inflammation Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain.
  9. Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; German Center for Cardiovascular Research (DZHK), Rhine Main, Germany; German Center for Lung Research (DZL), Giessen, Germany.
  10. Department of Experimental & Health Sciences, University Pompeu Fabra (UPF), CIBERNED, 08003 Barcelona, Spain. Electronic address: [email protected].
  11. Department of Experimental & Health Sciences, University Pompeu Fabra (UPF), CIBERNED, 08003 Barcelona, Spain. Electronic address: [email protected].
  12. Department of Experimental & Health Sciences, University Pompeu Fabra (UPF), CIBERNED, 08003 Barcelona, Spain; ICREA, 08010 Barcelona, Spain; Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain. Electronic address: [email protected].

PMID: 34450038 PMCID: PMC8452531 DOI: 10.1016/j.stemcr.2021.07.022

Abstract

Regeneration of skeletal muscle requires resident stem cells called satellite cells. Here, we report that the chromatin remodeler CHD4, a member of the nucleosome remodeling and deacetylase (NuRD) repressive complex, is essential for the expansion and regenerative functions of satellite cells. We show that conditional deletion of the Chd4 gene in satellite cells results in failure to regenerate muscle after injury. This defect is principally associated with increased stem cell plasticity and lineage infidelity during the expansion of satellite cells, caused by de-repression of non-muscle-cell lineage genes in the absence of Chd4. Thus, CHD4 ensures that a transcriptional program that safeguards satellite cell identity during muscle regeneration is maintained. Given the therapeutic potential of muscle stem cells in diverse neuromuscular pathologies, CHD4 constitutes an attractive target for satellite cell-based therapies.

Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.

Keywords: Chd4; NuRD; lineage maintenance; muscle stem cell; regeneration; satellite cells; skeletal muscle

References

  1. Dev Cell. 2013 Aug 12;26(3):223-36 - PubMed
  2. Development. 2007 Apr;134(8):1571-82 - PubMed
  3. Nature. 2018 May;557(7707):739-743 - PubMed
  4. Genes Dev. 1999 Jan 15;13(2):213-24 - PubMed
  5. FASEB J. 2009 Aug;23(8):2681-90 - PubMed
  6. EMBO J. 2001 Apr 2;20(7):1739-53 - PubMed
  7. Nucleic Acids Res. 2017 Oct 13;45(18):10534-10554 - PubMed
  8. Biochem Soc Trans. 2013 Jun;41(3):777-82 - PubMed
  9. Curr Top Dev Biol. 2018;126:235-284 - PubMed
  10. Immunity. 2004 Jun;20(6):719-33 - PubMed
  11. J Clin Invest. 2016 Apr 1;126(4):1555-65 - PubMed
  12. Nat Commun. 2015 Jun 01;6:7140 - PubMed
  13. Cell. 1998 Oct 16;95(2):279-89 - PubMed
  14. Physiol Rev. 2013 Jan;93(1):23-67 - PubMed
  15. Genesis. 2017 Apr;55(4): - PubMed
  16. Cell Rep. 2020 May 19;31(7):107652 - PubMed
  17. Cell Metab. 2016 May 10;23(5):881-92 - PubMed
  18. Mol Cell Biol. 2006 Feb;26(3):843-51 - PubMed
  19. Nature. 2016 Dec 15;540(7633):428-432 - PubMed
  20. Elife. 2018 Oct 04;7: - PubMed
  21. PLoS One. 2011;6(9):e24515 - PubMed
  22. J Biol Chem. 2017 May 19;292(20):8507-8519 - PubMed
  23. Nat Rev Cancer. 2011 Jul 07;11(8):588-96 - PubMed
  24. Cancer Res. 2002 Sep 1;62(17):4916-21 - PubMed
  25. Nat Rev Mol Cell Biol. 2018 Sep;19(9):594-610 - PubMed
  26. BMC Cancer. 2020 Mar 30;20(1):262 - PubMed
  27. Genes Dev. 2011 Apr 15;25(8):789-94 - PubMed

Publication Types