Display options
Share it on

G3 (Bethesda). 2021 Dec 08;11(12). doi: 10.1093/g3journal/jkab349.

Genome-wide phenotypic RNAi screen in the Drosophila wing: phenotypic description of functional classes.

G3 (Bethesda, Md.)

Ana López-Varea, Patricia Vega-Cuesta, Ana Ruiz-Gómez, Cristina M Ostalé, Cristina Molnar, Covadonga F Hevia, Mercedes Martín, Maria F Organista, Jesus de Celis, Joaquín Culí, Nuria Esteban, Jose F de Celis

Affiliations

  1. Centro de Biología Molecular "Severo Ochoa," CSIC and Universidad Autónoma de Madrid, Madrid 28049, Spain.
  2. IRB Barcelona, Barcelona 08028, Spain.

PMID: 34599810 PMCID: PMC8664486 DOI: 10.1093/g3journal/jkab349

Abstract

The Drosophila genome contains approximately 14,000 protein-coding genes encoding all the necessary information to sustain cellular physiology, tissue organization, organism development, and behavior. In this manuscript, we describe in some detail the phenotypes in the adult fly wing generated after knockdown of approximately 80% of Drosophila genes. We combined this phenotypic description with a comprehensive molecular classification of the Drosophila proteins into classes that summarize the main expected or known biochemical/functional aspect of each protein. This information, combined with mRNA expression levels and in situ expression patterns, provides a simplified atlas of the Drosophila genome, from housekeeping proteins to the components of the signaling pathways directing wing development, that might help to further understand the contribution of each gene group to wing formation.

© The Author(s) 2021. Published by Oxford University Press on behalf of Genetics Society of America.

Keywords: RNAi; phenotype; screen; wing

References

  1. Development. 1997 Mar;124(5):1007-18 - PubMed
  2. Nat Rev Genet. 2006 Dec;7(12):907-16 - PubMed
  3. Genome Biol. 2007;8(10):R216 - PubMed
  4. Dev Cell. 2002 Sep;3(3):311-21 - PubMed
  5. Mech Dev. 1994 May;46(2):109-22 - PubMed
  6. Genetics. 2017 May;206(1):231-249 - PubMed
  7. Cell. 1996 Feb 9;84(3):345-57 - PubMed
  8. Development. 1995 Aug;121(8):2265-78 - PubMed
  9. Nature. 2006 Feb 23;439(7079):1009-13 - PubMed
  10. Cell. 1994 Jan 14;76(1):89-102 - PubMed
  11. Nat Rev Genet. 2002 Mar;3(3):176-88 - PubMed
  12. Nucleic Acids Res. 2019 Jan 8;47(D1):D759-D765 - PubMed
  13. Genetics. 2012 Oct;192(2):741-52 - PubMed
  14. Science. 1996 Oct 11;274(5285):252-5 - PubMed
  15. Genetics. 2009 Nov;183(3):1005-26 - PubMed
  16. Gene Expr Patterns. 2009 Jan;9(1):31-6 - PubMed
  17. Genes Dev. 1993 Jun;7(6):961-73 - PubMed
  18. Genetics. 2008 Jan;178(1):307-23 - PubMed
  19. Development. 2011 Jan;138(1):9-22 - PubMed
  20. PLoS Genet. 2015 Aug 04;11(8):e1005370 - PubMed
  21. PLoS Genet. 2013;9(12):e1003982 - PubMed
  22. Development. 2003 Dec;130(25):6317-28 - PubMed
  23. Nat Genet. 2000 May;25(1):25-9 - PubMed
  24. Genetics. 2016 Jul;203(3):1265-81 - PubMed
  25. Dev Dyn. 2005 Mar;232(3):695-708 - PubMed
  26. G3 (Bethesda). 2021 Dec 8;11(12): - PubMed
  27. Development. 1993 Feb;117(2):509-23 - PubMed
  28. Genetics. 2017 Jun;206(2):665-689 - PubMed
  29. Dev Biol. 2012 Jun 15;366(2):163-71 - PubMed
  30. Chromosoma. 2016 Sep;125(4):573-92 - PubMed
  31. PLoS One. 2014 Jun 26;9(6):e101133 - PubMed
  32. Genetics. 2015 Nov;201(3):843-52 - PubMed
  33. Genes Dev. 1999 Jan 1;13(1):98-111 - PubMed
  34. Science. 2000 Mar 24;287(5461):2185-95 - PubMed
  35. G3 (Bethesda). 2021 Dec 8;11(12): - PubMed
  36. Genetics. 2006 Nov;174(3):1635-59 - PubMed
  37. J Cell Sci. 2012 Mar 15;125(Pt 6):1383-91 - PubMed
  38. Nature. 2010 Mar 11;464(7286):287-91 - PubMed
  39. Mech Dev. 1997 Feb;62(1):41-50 - PubMed

Publication Types