Display options
Share it on

Chemphyschem. 2021 Oct 05;22(19):1937-1938. doi: 10.1002/cphc.202100678.

Density Functional Theory Study of Reaction Equilibria in Signal Amplification by Reversible Exchange.

Chemphyschem : a European journal of chemical physics and physical chemistry

Kailai Lin, Patrick TomHon, Sören Lehmkuhl, Raul Laasner, Thomas Theis, Volker Blum

Affiliations

  1. Department of Chemistry, Duke University, Durham, NC 27708, USA.
  2. Department of Chemistry, North Carolina State University, Raleigh, NC 27606, USA.
  3. Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA.
  4. Joint Department of Biomedical Engineering, UNC, Chapel Hill, and NC State University, Raleigh, NC 27606, USA.
  5. Department of Physics, North Carolina State University, Raleigh, NC 27606, USA.

PMID: 34617650 PMCID: PMC8725239 DOI: 10.1002/cphc.202100678

Abstract

The front cover artwork is provided by the groups of Prof. Thomas Theis (North Carolina State University) Prof. Volker Blum (Duke University). The image shows the reaction network of Signal Amplification by Reversible Exchange (SABRE), elucidated by density functional theory (DFT). Read the full text of the Review at 10.1002/cphc.202100204.

© 2021 Wiley-VCH GmbH.

References

  1. Chem Commun (Camb). 2020 Aug 21;56(65):9336-9339 - PubMed
  2. Angew Chem Int Ed Engl. 2019 Jul 22;58(30):10271-10275 - PubMed
  3. Angew Chem Int Ed Engl. 2018 Aug 27;57(35):11140-11162 - PubMed
  4. Phys Chem Chem Phys. 2016 Jan 7;18(1):89-93 - PubMed
  5. J Am Chem Soc. 2007 May 2;129(17):5580-6 - PubMed
  6. J Phys Chem Lett. 2015 May 21;6(10):1961-7 - PubMed
  7. J Phys Chem B. 2014 Dec 4;118(48):13882-9 - PubMed
  8. Science. 2009 Mar 27;323(5922):1708-11 - PubMed
  9. Science. 2016 Mar 25;351(6280):aad3000 - PubMed
  10. Eur Radiol. 1998;8(5):820-7 - PubMed
  11. Sci Data. 2016 Feb 16;3:160009 - PubMed
  12. Phys Chem Chem Phys. 2020 Mar 7;22(9):5033-5037 - PubMed
  13. J Phys Chem A. 2014 Sep 4;118(35):7349-59 - PubMed
  14. J Magn Reson. 2015 Aug;257:15-23 - PubMed
  15. Catal Sci Technol. 2020 Mar 7;10(5):1343-1355 - PubMed
  16. Sci Adv. 2016 Mar 25;2(3):e1501438 - PubMed
  17. Phys Rev Lett. 2006 Feb 10;96(5):053002 - PubMed
  18. Angew Chem Int Ed Engl. 2003 Jul 28;42(29):3340-63 - PubMed
  19. Chemphyschem. 2017 Sep 20;18(18):2426-2429 - PubMed
  20. Phys Chem Chem Phys. 2018 Nov 7;20(41):26362-26371 - PubMed
  21. Angew Chem Int Ed Engl. 2008;47(8):1492-5 - PubMed
  22. J Phys Chem C Nanomater Interfaces. 2015 Apr 23;119(16):8786-8797 - PubMed
  23. J Am Chem Soc. 2009 Sep 23;131(37):13362-8 - PubMed
  24. Sci Adv. 2018 Jan 05;4(1):eaao6250 - PubMed
  25. J Phys Chem C Nanomater Interfaces. 2018 Oct 11;122(40):23002-23010 - PubMed
  26. J Am Chem Soc. 2011 Apr 27;133(16):6134-7 - PubMed
  27. Chemphyschem. 2017 Jun 20;18(12):1493-1498 - PubMed
  28. J Phys Chem Lett. 2018 Mar 1;9(5):1112-1117 - PubMed
  29. J Phys Chem B. 2015 Oct 29;119(43):13619-29 - PubMed
  30. Anal Chem. 2014 Jun 17;86(12):5601-5 - PubMed
  31. Chemistry. 2015 Feb 16;21(8):3156-66 - PubMed
  32. J Phys Chem C Nanomater Interfaces. 2017 Mar 30;121(12):6626-6634 - PubMed
  33. J Am Chem Soc. 2015 Feb 4;137(4):1404-7 - PubMed
  34. J Phys Chem Lett. 2017 Apr 6;8(7):1449-1457 - PubMed
  35. Proc Natl Acad Sci U S A. 2003 Sep 2;100(18):10158-63 - PubMed
  36. Angew Chem Int Ed Engl. 2018 Jun 4;57(23):6742-6753 - PubMed
  37. Nat Commun. 2013;4:2946 - PubMed
  38. Phys Chem Chem Phys. 2015 Mar 21;17(11):7373-85 - PubMed
  39. Phys Rev Lett. 2009 Feb 20;102(7):073005 - PubMed
  40. J Chem Phys. 2007 Apr 28;126(16):164103 - PubMed
  41. J Chem Theory Comput. 2017 Nov 14;13(11):5582-5603 - PubMed
  42. Phys Rev Lett. 1996 Oct 28;77(18):3865-3868 - PubMed
  43. J Phys Chem Lett. 2017 Jul 6;8(13):3008-3014 - PubMed
  44. Prog Nucl Magn Reson Spectrosc. 2019 Oct - Dec;114-115:33-70 - PubMed
  45. Anal Chem. 2019 May 21;91(10):6695-6701 - PubMed
  46. Nat Commun. 2019 Jan 23;10(1):395 - PubMed

Publication Types

Grant support