Display options
Share it on

Adv Mater. 2021 Nov 13;e2106827. doi: 10.1002/adma.202106827. Epub 2021 Nov 13.

Simultaneous Large Optical and Piezoelectric Effects Induced by Domain Reconfiguration Related to Ferroelectric Phase Transitions.

Advanced materials (Deerfield Beach, Fla.)

Peter Finkel, Markys G Cain, Thomas Mion, Margo Staruch, Jakub Kolacz, Sukriti Mantri, Chad Newkirk, Kyril Kavetsky, John Thornton, Junhai Xia, Marc Currie, Thomas Hase, Alex Moser, Paul Thompson, Christopher A Lucas, Andy Fitch, Julie M Cairney, Scott D Moss, Alan Gareth Alexander Nisbet, John E Daniels, Samuel E Lofland

Affiliations

  1. US Naval Research Laboratory, Washington, DC, 02375, USA.
  2. Electrosciences Ltd., Farnham, GU9 9QT, UK.
  3. School of Materials Science and Engineering, University of New South Wales Sydney, Union Rd, Kensington, NSW, 2052, Australia.
  4. Department of Physics, Rowan University, Glassboro, NJ, 08028-1701, USA.
  5. Defence Science and Technology Group, Aerospace Division, Fishermans Bend, VIC, 3207, Australia.
  6. Department of Mechanical Engineering, University of Sydney, Sydney, NSW, 2006, Australia.
  7. Department of Physics, University of Warwick, Conventry, CV4 7AL, UK.
  8. Oliver Lodge Laboratory, Department of Physics, University of Liverpool, Liverpool, L69 3BX, UK.
  9. XMaS Beamline, European Synchrotron Radiation Facility, Grenoble, F-38043, France.
  10. European Synchrotron Radiation Facility, 71 Avenue des Martyrs, CS40220, Grenoble Cedex 9, 38043, France.
  11. I16 Beamline, Diamond Light Source, Oxfordshire, OX11 0DE, UK.

PMID: 34773926 DOI: 10.1002/adma.202106827

Abstract

Electrical switching of ferroelectric domains and subsequent domain wall motion promotes strong piezoelectric activity, however, light scatters at refractive index discontinuities such as those found at domain wall boundaries. Thus, simultaneously achieving large piezoelectric effect and high optical transmissivity is generally deemed infeasible. Here, it is demonstrated that the ferroelectric domains in perovskite Pb(In

© 2022 Commonwealth of Australia. Advanced Materials published by Wiley-VCH GmbH.

Keywords: X-ray diffraction; electrochromic composites; piezoelectric activity; single crystals

References

  1. D. A. B. Miller, J. Lightwave Technol. 2017, 35, 346. - PubMed
  2. W. Jiang, C. J. Sarabalis, Y. D. Dahmani, R. N. Patel, F. M. Mayor, T. P. McKenna, R. van Laer, A. H. Safavi-Naeini, Nat. Commun. 2020, 11, 1166. - PubMed
  3. J. Li, Y. Li, Q. Meng, Z. Zhou, D. Jia, R. McIntosh, A. S. Bhalla, R. Guo, Mater. Res. Bull. 2018, 97, 523. - PubMed
  4. G. H. Haertling, J. Am. Ceram. Soc. 1999, 82, 797. - PubMed
  5. G. H. Haertling, C. E. Land, J. Am. Ceram. Soc. 1971, 54, 1. - PubMed
  6. K. Nashimoto, S. Nakamura, T. Morikawa, H. Moriyama, M. Watanabe, E. Osakabe, Jpn. J. Appl. Phys. 1999, 38, 5641. - PubMed
  7. C. E. Land, P. D. Teacher, G. H. Haertling, in Applied Solid State Science (Ed: W. Raymond), Elsevier, Amsterdam, The Netherlands 1974, pp. 137-233. - PubMed
  8. A. Kumada, K. Suzuki, G. Toda, Ferroelectrics 1976, 10, 25. - PubMed
  9. C. Kittel, Phys. Rev. 1951, 82, 729. - PubMed
  10. S.-E. Park, M.-J. Pan, K. Markowski, S. Yoshikawa, L. E. Cross, J. Appl. Phys. 1998, 82, 1798. - PubMed
  11. I. V. Ciuchi, L. Mitoseriu, C. Galassi, J. Am. Ceram. Soc. 2016, 99, 2382. - PubMed
  12. A. Kumada, G. Toda, Y. Otomo, Ferroelectrics 2011, 7, 367. - PubMed
  13. W. Ruan, G. Li, J. Zeng, J. Bian, L. S. Kamzina, H. Zeng, L. Zheng, A. Ding, J. Am. Ceram. Soc. 2010, 93, 2128. - PubMed
  14. Z. He, B. Gao, T. Li, J Liao, B. Liu, X. Liu, C. Wang, Z. Feng, Z. Gu, ACS Sustainable Chem. Eng. 2019, 7, 1745. - PubMed
  15. X. Chen, L. Luo, Z. Zeng, J. Jiao, M. Shehzad, G. Yuan, H. Luo, Y. Wang, J. Materiomics 2020, 6, 643. - PubMed
  16. S. Qin, Q. Zhang, X. Yang, M. Liu, Q. Sun, Z. L. Wang, Adv. Energy Mater. 2018, 8, 1800069. - PubMed
  17. S. E. E. Park, W. Hackenberger, Curr. Opin. Solid State Mater. Sci. 2002, 6, 11. - PubMed
  18. S. Zhang, T. R. Shrout, IEEE Trans. Ultrason., Ferroelectr., Freq. Control 2010, 57, 2138. - PubMed
  19. H. Fu, R. E. Cohen, Nature 2000, 403, 281. - PubMed
  20. S.-E. Park, T. R. Shrout, J. Appl. Phys. 1998, 82, 1804. - PubMed
  21. E. Sun, W. Cao, Prog. Mater. Sci. 2014, 65, 124. - PubMed
  22. F. Li, S. Zhang, J. Luo, X. Geng, Z. Xu, T. R. Shrout, J. Appl. Phys. 2016, 120, 074105. - PubMed
  23. H. Qiao, C. He, Z. Wang, X. Li, Y. Liu, H. Tailor, X. Long, J. Am. Ceram. Soc. 2019, 102, 79. - PubMed
  24. S. Abel, T. Stöferle, C. Marchiori, C. Rossel, M. D. Rossell, R. Erni, D. Caimi, M. Sousa, A. Chelnokov, B. J. Offrein, J. Fompeyrine, Nat. Commun. 2013, 4, 1671. - PubMed
  25. M. F. Sarott, M. Fiebig, M. Trassin, Appl. Phys. Lett. 2020, 117, 132901. - PubMed
  26. G. F. Nataf, M. Guennou, J. Phys.: Condens. Matter 2020, 32, 183001. - PubMed
  27. L. W. Martin, A. M. Rappe, Nat. Rev. Mater. 2016, 2, 1671. - PubMed
  28. Y. Zhang, W. Jie, P. Chen, W. Liu, J. Hao, Adv. Mater. 2018, 30, 1707007. - PubMed
  29. D. Damjanovic, J. Am. Ceram. Soc. 2005, 88, 2663. - PubMed
  30. C. Qiu, B. Wang, N. Zhang, S. Zhang, J. Liu, D. Walker, Y. Wang, H. Tian, T. R. Shrout, Z. Xu, L.-Q. Chen, F. Li, Nature 2020, 577, 350. - PubMed
  31. C. Deng, L. Ye, C. He, G. Xu, Q. Zhai, H. Luo, Y. Liu, A. J. Bell, Adv. Mater. 2021, 33, 2663. - PubMed
  32. A. Amin, M. J. Haun, B. Badger, H. McKinstry, L. E. Cross, Ferroelectrics 2011, 65, 107. - PubMed
  33. A. Amin, L. E. Cross, Br. Ceram. Trans. 2013, 103, 89. - PubMed
  34. D. Damjanovic, Appl. Phys. Lett. 2010, 97, 062906. - PubMed
  35. D. Viehland, J. F. Li, J. Appl. Phys. 2002, 92, 7690. - PubMed
  36. P. Finkel, M. Staruch, A. Amin, M. Ahart, S. E. Lofland, Sci. Rep. 2015, 5, 13770. - PubMed
  37. Y. Wang, D. Wang, G. Yuan, H. Ma, F. Xu, J. Li, D. Viehland, P. M. Gehring, Phys. Rev. B 2016, 94, 174103. - PubMed
  38. J. Fousek, V. Janovec, J. Appl. Phys. 1969, 40, 135. - PubMed
  39. T. R. Welberry, Diffuse X-Ray Scattering and Models of Disorder, Oxford University Press, New York 2004. - PubMed
  40. G. Xu, Z. Zhong, H. Hiraka, G. Shirane, Phys. Rev. B 2004, 70, 174109. - PubMed
  41. T. R. Welberry, M. J. Gutmann, H. Woo, D. J. Goossens, G. Xu, C. Stock, W. Chen, Z.-G. Ye, J. Appl. Crystallogr. 2005, 38, 639. - PubMed
  42. I.-K. Jeong, T. W. Darling, J. K. Lee, T. Proffen, R. H. Heffner, J. S. Park, K. S. Hong, W. Dmowski, T. Egami, Phys. Rev. Lett. 2005, 94, 147602. - PubMed
  43. M. Eremenko, V. Krayzman, A. Bosak, H. Y. Playford, K. W. Chapman, J. C. Woicik, B. Ravel, I. Levin, Nat. Commun. 2019, 10, 2728. - PubMed
  44. M. J. Krogstad, P. M. Gehring, S. Rosenkranz, R. Osborn, F. Ye, Y. Liu, J. P. C. Ruff, W. Chen, J. M. Wozniak, H. Luo, O. Chmaissem, Z.-G. Ye, D. Phelan, Nat. Mater. 2018, 17, 718. - PubMed
  45. G. Xu, Z. Zhong, Y. Bing, Z.-G. Ye, G. Shirane, Nat. Mater. 2006, 5, 134. - PubMed
  46. J. Daniels, “Critus XRD | Diffraction with Electric Field,” https://www.critus.com.au/ (accessed: October 2021). - PubMed
  47. Y. Liu, J. Xia, P. Finkel, S. D. Moss, X. Liao, J. M. Cairney, Acta Mater. 2019, 175, 436. - PubMed
  48. C. Pecharromán, G. Mata-Osoro, J. S. Moya, L. A. Díaz, R. Torrecillas, Opt. Express 2009, 17, 6899. - PubMed
  49. F. Wu, B. Yang, E. Sun, W. Yang, W. Cao, Opt. Mater. 2013, 36, 342. - PubMed
  50. X. Wan, H. L. W. Chan, C. L. Choy, X. Zhao, H. Luo, J. Appl. Phys. 2004, 96, 1387. - PubMed
  51. F. Wu, B. Yang, E. Sun, G. Liu, H. Tian, W. Cao, J. Appl. Phys. 2013, 114, 027021. - PubMed
  52. D.-S. Wang, P. W. Barber, Appl. Opt. 1978, 17, 797. - PubMed
  53. W. He, Q. Li, Y. Sun, X. Xi, Y. Zhang, Q. Yan, J. Mater. Chem. C 2017, 5, 2459. - PubMed
  54. H. J. Lee, S. Zhang, J. Luo, F. Li, T. R. Shrout, Adv. Funct. Mater. 2011, 20, 3154. - PubMed
  55. P. Finkel, A. Amin, S. Lofland, J. Yao, D. Viehland, Phys. Status Solidi A 2012, 209, 2108. - PubMed
  56. D. Phelan, E. E. Rodriguez, J. Gao, Y. Bing, Z.-G. Ye, Q. Huang, J. Wen, G. Xu, C. Stock, M. Matsuura, P. M. Gehring, Phase Transitions 2015, 88, 283. - PubMed
  57. G. Xu, Z. Zhong, Y. Bing, Z.-G. Ye, C. Stock, G. Shirane, Phys. Rev. B 2003, 67, 104102. - PubMed
  58. C. J. Howard, H. T. Stokes, Acta Crystallogr., Sect. A: Found. Adv. 2004, 61, 93. - PubMed
  59. D. D. Viehland, E. K. H. Salje, Adv. Phys. 2014, 63, 267. - PubMed
  60. J. Zhang, C. C. Tasan, M. J. Lai, A.-C. Dippel, D. Raabe, Nat. Commun. 2017, 8, 93. - PubMed
  61. M. G. Cain, Characterisation of Ferroelectric Bulk Materials and Thin Films, Springer, Dordrecht, The Netherlands 2014. - PubMed
  62. J. Erhart, Phase Transitions 2006, 77, 989. - PubMed
  63. S. Mantri, J. Daniels, J. Am. Ceram. Soc. 2021, 104, 1619. - PubMed
  64. E .A. Patterson, M. Staruch, B. Matis, S. Young, S. E. Lofland, L. Antonelli, F. Blackmon, D. Damjanovic, M. G. Cain, P. B. J. Thompson, C. A. Lucas, P. Finkel, Appl. Phys. Lett. 2020, 116, 222903. - PubMed
  65. C. Vecchini, P. Thompson, M. Stewart, A. Muñiz-Piniella, S. R. C. McMitchell, J. Wooldridge, S. Lepadatu, L. Bouchenoire, S. Brown, D. Wermeille, O. Bikondoa, C. A. Lucas, T. P. A. Hase, M. Lesourd, D. Dontsov, M. G. Cain, Rev. Sci. Instrum. 2015, 86, 103901. - PubMed
  66. V. A. Solé, E. Papillon, M. Cotte, P. Walter, J. Susini, Spectrochim. Acta, Part B 2007, 62, 63. - PubMed
  67. A. G. A. Nisbet, G. Beutier, F. Fabrizi, B. Moser, S. P. Collins, Acta Crystallogr., Sect. A: Found. Adv. 2015, 71, 20. - PubMed
  68. Object Research Systems Inc., Dragonfly Software v2020.2, 2020. - PubMed

Publication Types

Grant support