Display options
Share it on

Arch Environ Contam Toxicol. 2022 Jan;82(1):131-141. doi: 10.1007/s00244-021-00903-6. Epub 2021 Nov 19.

The Longitudinal Profile of a Stream Contaminated With 2,4-D and its Effects on Non-Target Species.

Archives of environmental contamination and toxicology

Isabele Baima Ferreira Freitas, Allan Pretti Ogura, Davi Gasparini Fernandes Cunha, Aline Silva Cossolin, Murilo de Souza Ferreira, Bianca Veloso Goulart, Cassiana Carolina Montagner, Evaldo Luiz Gaeta Espíndola

Affiliations

  1. Nucleus of Ecotoxicology and Applied Ecology, Department of Hydraulic and Sanitation, NEEA/CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, Trabalhador Sancarlense Avenue, 400, São Carlos, São Paulo, 13560-970, Brazil. [email protected].
  2. Nucleus of Ecotoxicology and Applied Ecology, Department of Hydraulic and Sanitation, NEEA/CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, Trabalhador Sancarlense Avenue, 400, São Carlos, São Paulo, 13560-970, Brazil.
  3. Department of Hydraulic and Sanitation, BIOTACE/SHS, São Carlos School of Engineering, University of São Paulo, São Carlos, São Paulo, Brazil.
  4. Analytical Chemistry Department, LQA, Institute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil.

PMID: 34797381 DOI: 10.1007/s00244-021-00903-6

Abstract

Pesticides can cause harmful effects to aquatic communities, even at concentrations below the threshold limit established as guidelines for the water bodies by environmental agencies. In this research, an input of the herbicide 2,4-dichlorophenoxyacetic acid (i.e., 2,4-D) was simulated under controlled conditions in a 500-m-long reach of a first-order tropical stream in Southeastern Brazil. Two water samplings at eight stations investigated the stream longitudinal contamination profile. The ecotoxicological effects were analyzed using Eruca sativa L. seed germination assays and the acute and chronic toxicity tests with the neotropical cladoceran Ceriodaphnia silvestrii. Physicochemical parameters of water quality were evaluated to characterize the study area and quantify 2,4-D concentrations along the stream to assess pesticide retention. The 2,4-D concentration was reduced by approximately 50% downstream in the samplings, indicating that the herbicide was retained along the stream. Moreover, C. silvestrii reproduction in long-term assays decreased approximately 50% in the stations with higher concentrations of 2,4-D than the laboratory control. After contamination, E. sativa L. showed a lower average root growth (1.0 cm), statistically different from the control (2.2 cm). On the other hand, similar growth values were obtained among the background and the most downstream stations. Our study highlighted the relevance of reviewing and updating herbicide guidelines and criteria to prevent possible ecological risks.

© 2021. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.

References

  1. ABNT (2016) Associação Brasileira de Normas Técnicas. Ecotoxicologia aquática - Toxicicidade aguda - Método de ensaio com Daphnia spp. (Crustacea, Cladocera). NBR12713 - PubMed
  2. ABNT (2017) Associação Brasileira de Normas Técnicas. Ecotoxicologia aquática - Toxicidade crônica - Método de ensaio com Ceriodaphnia spp. (Crustacea, Cladocera). NBR13373 - PubMed
  3. Atamaniuk TM, Kubrak OI, Storey KB, Lushchak VI (2013) Oxidative stress as a mechanism for toxicity of 2,4-dichlorophenoxyacetic acid (2,4-D): studies with goldfish gills. Ecotoxicology 22:1498–1508. https://doi.org/10.1007/s10646-013-1136-z - PubMed
  4. Belgers JDM, Van Lieverloo RJ, Van der Pas LJT, Van den Brink PJ (2007) Effects of the herbicide 2,4-D on the growth of nine aquatic macrophytes. Aquat Bot 86:260–268. https://doi.org/10.1016/j.aquabot.2006.11.002 - PubMed
  5. Borges S, Dzubow C, Orrick G, Stavola A (2004) 2,4-Dichlorophenoxyacetic Acid analysis of risks to endangered and threatened salmon and steelhead - PubMed
  6. Brasil (2017) Resolution N. 166, July 24th, 2017. Provides for the validation of analytical methods and other measures - PubMed
  7. Brazil (2005) CONAMA Resolution N. 357, March 17th, 2005. Provides for the classification of water bodies and environmental guidelines for their classification - PubMed
  8. Brazil (2021) Ministry of Health. Potability Standard. Ordinance 888, of May 4th, 2021. 29 - PubMed
  9. Brovini EM, de Deus BCT, Vilas-Boas JA et al (2021) Three-bestseller pesticides in Brazil: Freshwater concentrations and potential environmental risks. Sci Total Environ 771:144754. https://doi.org/10.1016/j.scitotenv.2020.144754 - PubMed
  10. Cenkci S, Yildiz M, Ciĝerci IH et al (2010) Evaluation of 2,4-D and Dicamba genotoxicity in bean seedlings using comet and RAPD assays. Ecotoxicol Environ Saf 73:1558–1564. https://doi.org/10.1016/j.ecoenv.2010.07.033 - PubMed
  11. CETESB (2017) Companhia Ambiental do Estado de São Paulo. Qualidade das Águas Interiores no Estado de São Paulo. Relatórios, São Paulo - PubMed
  12. Charalampous N, Kindou A, Vlastos D et al (2015) (2015) A multidisciplinary assessment of river surface water quality in areas heavily influenced by human activities. Arch Environ Contam Toxicol 692(69):208–222. https://doi.org/10.1007/S00244-015-0152-9 - PubMed
  13. CONAB (2020) Companhia Nacional de Abastecimento. Acompanhamento da Safra Brasileira de cana-de-açúcar (2020/2021). 7:62 - PubMed
  14. de Castro Marcato AC, de Souza CP, Fontanetti CS (2017) Herbicide 2,4-D: a review of toxicity on non-target organisms. Water Air Soil Pollut 228:120. https://doi.org/10.1007/s11270-017-3301-0 - PubMed
  15. Dehnert GK, Freitas MB, DeQuattro ZA et al (2018) Effects of low, subchronic exposure of 2,4-Dichlorophenoxyacetic acid (2,4-D) and commercial 2,4-D formulations on early life stages of fathead minnows ( Pimephales promelas ). Environ Toxicol Chem 37:2550–2559. https://doi.org/10.1002/etc.4209 - PubMed
  16. Dolui D, Saha I, Adak MK (2021) 2, 4-D removal efficiency of Salvinia natans L. and its tolerance to oxidative stresses through glutathione metabolism under induction of light and darkness. Ecotoxicol Environ Saf 208:111708. https://doi.org/10.1016/j.ecoenv.2020.111708 - PubMed
  17. Ebke KP, Felten C, Dören L (2013) Impact of heterophylly on the sensitivity of Myriophyllum aquaticum biotests. Environ Sci Eur 25:1–9. https://doi.org/10.1186/2190-4715-25-6 - PubMed
  18. Elias D, Bernot MJ (2017) Pesticide and nitrate transport in an agriculturally influenced stream in Indiana. Environ Monit Assess 189:1–16. https://doi.org/10.1007/s10661-017-5870-1 - PubMed
  19. FAO (2020) Food and agriculture organization of the United Nations. FAOSTAT, Agri-environmental Indicators / Pesticides - PubMed
  20. Fenner K, Canonica S, Wackett LP, Elsner M (2013) Evaluating pesticide degradation in the environment: Blind spots and emerging opportunities. Science (80). 341:752–758 - PubMed
  21. Freitas JS, Girotto L, Goulart BV et al (2019) Effects of 2,4-D-based herbicide (DMA® 806) on sensitivity, respiration rates, energy reserves and behavior of tadpoles. Ecotoxicol Environ Saf 182:109446. https://doi.org/10.1016/J.ECOENV.2019.109446 - PubMed
  22. Frimpong JO, Ofori ESK, Yeboah S et al (2018) Evaluating the impact of synthetic herbicides on soil dwelling macrobes and the physical state of soil in an agro-ecosystem. Ecotoxicol Environ Saf 156:205–215. https://doi.org/10.1016/j.ecoenv.2018.03.034 - PubMed
  23. Gaaied S, Oliveira M, Le Bihanic F et al (2019) Gene expression patterns and related enzymatic activities of detoxification and oxidative stress systems in zebrafish larvae exposed to the 2,4-dichlorophenoxyacetic acid herbicide. Chemosphere 224:289–297. https://doi.org/10.1016/j.chemosphere.2019.02.125 - PubMed
  24. Gamble DS (2009) Herbicide sorption by immersed soils: stoichiometry and the law of mass action in support of predictive kinetics. Environ Sci Technol 43:1930–1934. https://doi.org/10.1021/es8025177 - PubMed
  25. Goulart BV, Vizioli BDC, Espindola ELG, Montagner CC (2020) Matrix effect challenges to quantify 2,4-D and fipronil in aquatic systems. Environ Monit Assess 192:797. https://doi.org/10.1007/s10661-020-08776-3 - PubMed
  26. Guarda PM, Pontes AMS, de Domiciano R, S, et al (2020) Assessment of ecological risk and environmental behavior of pesticides in environmental compartments of the Formoso River in Tocantins, Brazil. Arch Environ Contam Toxicol 79:524–536. https://doi.org/10.1007/s00244-020-00770-7 - PubMed
  27. INMET (2021) National Institute of Meteorology. Ministry of Agriculture and Livestock Database. https://portal.inmet.gov.br . Accessed 10 Jun 2021 - PubMed
  28. Inmetro (2018) National Institute of Metrology, Quality and Technology - DOQ-CGCRE-008: Guidance on Validation of Analytical Methods, Revision 7 - PubMed
  29. Islam F, Wang J, Farooq MA et al (2018) Potential impact of the herbicide 2,4-dichlorophenoxyacetic acid on human and ecosystems. Environ Int 111:332–351. https://doi.org/10.1016/j.envint.2017.10.020 - PubMed
  30. Kim S, Chen J, Cheng T et al (2021) PubChem in 2021: New data content and improved web interfaces. Nucleic Acids Res 49:D1388–D1395. https://doi.org/10.1093/nar/gkaa971 - PubMed
  31. Kwon JW, Armbrust KL (2006) Degradation of chlorothalonil in irradiated water/sediment systems. J Agric Food Chem 54:3651–3657. https://doi.org/10.1021/jf052847q - PubMed
  32. Magnoli K, Carranza CS, Aluffi ME et al (2020) Herbicides based on 2,4-D: its behavior in agricultural environments and microbial biodegradation aspects. A Review Environ Sci Pollut Res 27:1–12 - PubMed
  33. Moreira RA, Rocha GS, da Silva LCM et al (2020) Exposure to environmental concentrations of fipronil and 2,4-D mixtures causes physiological, morphological and biochemical changes in Raphidocelis subcapitata. Ecotoxicol Environ Saf 206:111180. https://doi.org/10.1016/j.ecoenv.2020.111180 - PubMed
  34. Moreira RA, Araújo CVM, da Silva J, Pinto T et al (2021) Fipronil and 2,4-D effects on tropical fish: Could avoidance response be explained by changes in swimming behavior and neurotransmission impairments? Chemosphere 263:127972. https://doi.org/10.1016/j.chemosphere.2020.127972 - PubMed
  35. Nalcaci OO, Sirin S, Ovez B (2006) Toxicity determination of various phenoxyalkanoic acid herbicides using cress seed in phosphate contaminated aqueous media. WIT Trans Ecol Environ 95:301–307. https://doi.org/10.2495/WP060311 - PubMed
  36. Nørgaard KB, Cedergreen N (2010) Pesticide cocktails can interact synergistically on aquatic crustaceans. Environ Sci Pollut Res 17:957–967. https://doi.org/10.1007/s11356-009-0284-4 - PubMed
  37. Nowell LH, Capel PD, Dileanis PD (2010) Pesticides in stream sediment and aquatic biota: distribution, trends, and governing factors., Boca Raton. Lewis Publishers - PubMed
  38. Ohe T, Watanabe T, Wakabayashi K (2004) Mutagens in surface waters: a review. Mutat Res Mutat Res 567:109–149. https://doi.org/10.1016/J.MRREV.2004.08.003 - PubMed
  39. Özkul M, Özel ÇA, Yüzbaşıoğlu D, Ünal F (2016) Does 2,4-dichlorophenoxyacetic acid (2,4-D) induce genotoxic effects in tissue cultured Allium roots? Cytotechnology 68:2395–2405. https://doi.org/10.1007/s10616-016-9956-3 - PubMed
  40. Park K, Park J, Kim J, Kwak I-S (2010) Biological and molecular responses of Chironomus riparius (Diptera, Chironomidae) to herbicide 2,4-D (2,4-dichlorophenoxyacetic acid). Comp Biochem Physiol Part C Toxicol Pharmacol 151:439–446. https://doi.org/10.1016/j.cbpc.2010.01.009 - PubMed
  41. Pinto TJ da S, Moreira RA, Silva LCM da, et al (2021c) Impact of 2,4-D and fipronil on the tropical midge Chironomus sancticaroli (Diptera: Chironomidae). Ecotoxicol Environ Saf 209:111778 - PubMed
  42. Pinto TJ da S, Freitas JS, Moreira RA, et al (2021a) Functional responses of Hyalella meinerti after exposure to environmentally realistic concentrations of 2,4-D, fipronil, and vinasse (individually and in mixture). Aquat Toxicol 231:105712. https://doi.org/10.1016/j.aquatox.2020.105712 - PubMed
  43. Pinto TJ da S, Moreira RA, da Silva LCM, et al (2021b) Toxicity of fipronil and 2,4-D formulations (alone and in a mixture) to the tropical amphipod Hyalella meinerti. Environ Sci Pollut Res, https://doi.org/10.1007/s11356-021-13296-9 - PubMed
  44. Pollack N, Cunningham AR, Rosenkranz HS (2003) Environmental persistence of chemicals and their carcinogenic risks to humans. Mutat Res Mol Mech Mutagen 528:81–91. https://doi.org/10.1016/S0027-5107(03)00097-6 - PubMed
  45. Relyea RA (2009) A cocktail of contaminants: How mixtures of pesticides at low concentrations affect aquatic communities. Oecologia 159:363–376. https://doi.org/10.1007/s00442-008-1213-9 - PubMed
  46. Rydh Stenström J, Kreuger J, Goedkoop W (2021) Pesticide mixture toxicity to algae in agricultural streams – Field observations and laboratory studies with in situ samples and reconstituted water. Ecotoxicol Environ Saf 215:112153. https://doi.org/10.1016/j.ecoenv.2021.112153 - PubMed
  47. Salman JM, Hameed BH (2010) Adsorption of 2,4-dichlorophenoxyacetic acid and carbofuran pesticides onto granular activated carbon. Desalination 256:129–135. https://doi.org/10.1016/j.desal.2010.02.002 - PubMed
  48. Silva LCM, Daam MA, Gusmao F (2020a) Acclimation alters glyphosate temperature-dependent toxicity: Implications for risk assessment under climate change. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2019.121512 - PubMed
  49. Silva LCM, Moreira RA, Pinto TJS et al (2020b) Acute and chronic toxicity of 2,4-D and fipronil formulations (individually and in mixture) to the Neotropical cladoceran Ceriodaphnia silvestrii. Ecotoxicology. https://doi.org/10.1007/s10646-020-02275-4 - PubMed
  50. Ter Braak CJF (2009) Program CANOCO Version 4.56. Plant Research International, Wageningen University and Research Centre. - PubMed
  51. Triques MC, Oliveira D, Veloso Goulart B et al (2021) Assessing single effects of sugarcane pesticides fipronil and 2,4-D on plants and soil organisms. Ecotoxicol Environ Saf 208:111622. https://doi.org/10.1016/j.ecoenv.2020.111622 - PubMed
  52. Tunić T, Knežević V, Kerkez Đ et al (2015) Some arguments in favor of a Myriophyllum aquaticum growth inhibition test in a water–sediment system as an additional test in risk assessment of herbicides. Environ Toxicol Chem 34:2104–2115. https://doi.org/10.1002/etc.3034 - PubMed
  53. Turetta APD, Kuyper T, Malheiros TF, da Coutinho HL, C, (2017) A framework proposal for sustainability assessment of sugarcane in Brazil. Land Use Policy 68:597–603. https://doi.org/10.1016/j.landusepol.2017.08.011 - PubMed
  54. USEPA (1996) United States Environmental Protection Agency. Ecological Effects Test Guidelines, OPPTS 850.4200, Seed Germination/Root Elongation Toxicity Test. EPA 712-C-96–154. 7170 - PubMed
  55. Wood RJ, Mitrovic SM, Lim RP, Kefford BJ (2016) How benthic diatoms within natural communities respond to eight common herbicides with different modes of action. Sci Total Environ 557–558:636–643. https://doi.org/10.1016/j.scitotenv.2016.03.142 - PubMed
  56. Zuanazzi NR, Ghisi N de C, Oliveira EC (2020) Analysis of global trends and gaps for studies about 2,4-D herbicide toxicity: a scientometric review. Chemosphere 241 - PubMed

Publication Types

Grant support