Display options
Share it on

Med Biol Eng Comput. 2022 Jan;60(1):279-295. doi: 10.1007/s11517-021-02471-2. Epub 2021 Nov 29.

Spectrum-sine interpolation framework for DTI processing.

Medical & biological engineering & computing

Yuanjun Wang, Fan Jiang, Yu Liu

Affiliations

  1. Institute of Medical Imaging and Engineering, University of Shanghai for Science and Technology, Shanghai, China. [email protected].
  2. Institute of Medical Imaging and Engineering, University of Shanghai for Science and Technology, Shanghai, China.
  3. Department of Radiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China. [email protected].

PMID: 34845595 DOI: 10.1007/s11517-021-02471-2

Abstract

Diffusion tensor imaging (DTI) data interpolation is important for DTI processing, which could affect the precision and computational complexity in the process of denoising, filtering, regularization, and DTI registration and fiber tracking. In this paper, we propose a novel DTI interpolation framework named with spectrum-sine (SS) focusing on tensor orientation variation in DTI processing. Compared with the state-of-the-art DTI interpolation method using Euler angles or quaternion to represent the orientation of DTI tensors, this method does not need to convert eigenvectors into Euler angles or quaternions, but interpolates each tensor's unit eigenvector directly. The prominent merit of this tensor interpolation method lies in tensor orientation information preservation, which is different from the existing DTI tensor interpolation methods that interpolating tensor's orientation information in a scalar way. The experimental results from both synthetic and real human brain DTI data demonstrated the proposed SS interpolation scheme not only maintains the advantages of Log-Euclidean and Riemannian interpolation frameworks, such as preserving the tensor's symmetric positive definiteness and the monotonic determinant variation, but also preserve the tensor's anisotropy property which was proposed in the spectral quaternion (SQ) method.

© 2021. International Federation for Medical and Biological Engineering.

Keywords: DTI mean; Diffusion tensor MRI; Riemannian manifold; Spectrum-sine interpolation

References

  1. Alexander DC, Pierpaoli C, Basser PJ, Gee JC (2001) Spatial transformations of diffusion tensor magnetic resonance images. IEEE Trans Med Imaging 20(11):1131–1139 - PubMed
  2. Arsigny V, Fillard P, Pennec X, Ayache N (2006) Log-Euclidean metrics for fast and simple calculus on diffusion tensors. Magn Reson Med 56(2):411–421 - PubMed
  3. Basser PJ, Pierpaoli C (1996) Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J Magn Reson 213(2):560–570 - PubMed
  4. Batchelor PG, Moakher M, Atkinson D, Calamante F, Connelly A (2005) A rigorous framework for diffusion tensor calculus. Magn Reson Med 53(1):221–225 - PubMed
  5. Bihan DL, Mangin JF, Poupon C, Clark CA, Pappata S, Molko N et al (2001) Diffusion tensor imaging: concepts and applications. Journal of magnetic resonance imaging : JMRI 13(4):534–546 - PubMed
  6. Bro R, Acar E, Kolda TG (2008) Resolving the sign ambiguity in the singular value decomposition. J Chemom 22(2):135–140 - PubMed
  7. Collard A, Bonnabel S, Phillips C, Sepulchre R (2014) Anisotropy preserving DTI processing. Int J Comput Vision 107(1):58–74 - PubMed
  8. Fletcher PT, Joshi S (2007) Riemannian geometry for the statistical analysis of diffusion tensor data. Signal Process 87(2):250–262 - PubMed
  9. Frindel C, Robini M, Schaerer J, Croisille P, Zhu YM (2010) A graph-based approach for automatic cardiac tractography. Magn Reson Med 64(4):1215–1229 - PubMed
  10. Hoptman MJ, Nierenberg J, Bertisch HC, Catalano D, Ardekani BA, Branch CA et al (2008) A DTI study of white matter microstructure in individuals at high genetic risk for schizophrenia. Schizophr Res 106(2–3):115–124 - PubMed
  11. Hui Z, Yushkevich PA, Alexander DC, Gee JC (2006) Deformable registration of diffusion tensor MR images with explicit orientation optimization. Med Image Comput Comput Assist Interv 8(1):172–179 - PubMed
  12. Kindlmann G, Weinstein D, Hart D (2000) Strategies for direct volume rendering of diffusion tensor fields. IEEE Trans Visual Comput Graphics 6(2):124–138 - PubMed
  13. Kindlmann, G., Raúl San José Estépar, Niethammer, M., Haker, S., & Westin, C. F. (2007). Geodesic-loxodromes for diffusion tensor interpolation and difference measurement. MICCAI pp. 1–9. - PubMed
  14. Moakher M (2005) A differential geometry approach to the geometric mean of symmetric positive-definite matrices. SIAM J Matrix Anal Appl 26(3):735–747 - PubMed
  15. Peeters, T. H. J. M., Rodrigues, P. R., Vilanova, A., & Romeny, B. M. H. (2009). Analysis of distance/similarity measures for diffusion tensor imaging. Visualization and Processing of Tensor Fields. Springer Berlin Heidelberg. - PubMed
  16. Peng H, Orlichenko A, Dawe RJ, Agam G, Zhang S, Arfanakis K (2009) Development of a human brain diffusion tensor template. Neuroimage 46(4):967–980 - PubMed
  17. Pennec X, Fillard P, Ayache N (2006) A Riemannian framework for tensor computing. Int J Comput Vision 66(1):41–66 - PubMed
  18. Peter J, Basser M, J., & Denis LeBihan. (1994) MR diffusion tensor spectroscopy and imaging. Biophys J 66(1):259–267 - PubMed
  19. Peyrat JM, Sermesant M, Pennec X, Delingette H (2007) A computational framework for the statistical analysis of cardiac diffusion tensors: application to a small database of canine hearts. IEEE Trans Med Imaging 26(11):1500–1514 - PubMed
  20. Shoemake, K. (1985). Animating rotation with quaternion curves. Conference on Computer Graphics & Interactive Techniques. ACM, pp. 245–254. - PubMed
  21. Smith SM, Jenkinson M, Johansen-Berg H, Rueckert D, Nichols TE, Mackay CE et al (2006) Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage 31(4):1487–1505 - PubMed
  22. Son CI (2012) Diffusion tensor interpolation profile control using non-uniform motion on a Riemannian geodesic. Frontiers of Information Technology & Electronic Engineering 13(2):90–98 - PubMed
  23. Toussaint, N; Sermesant, M; Stoeck, C T; Kozerke, & S; Batchelor. (2010). In vivo human 3D cardiac fibre architecture: reconstruction using curvilinear interpolation of diffusion tensor images. Med Image Comput Comput Assist Interv, pp. 418–425. - PubMed
  24. Wang Y, Chen Z, Nie S, Westin CF (2013) Diffusion tensor image registration using polynomial expansion. Phys Med Biol 58(17):6029–6046 - PubMed
  25. Wang Z, Vemuri BC, Chen Y, Mareci T (2004) A constrained variational principle for direct estimation and smoothing of the diffusion tensor field from complex DWI. IEEE Trans Med Imaging 23(8):930–939 - PubMed
  26. Weickert, J., & Welk, M. (2005). Tensor field interpolation with PDES. - PubMed
  27. Yang F, Zhu YM, Magnin IE, Luo JH, Croisille P, Kingsley PB (2012) Feature-based interpolation of diffusion tensor fields and application to human cardiac DT-MRI. Med Image Anal 16(2):459–481 - PubMed
  28. Yu S, Ying L, Fuchun S (2012) Overview of tensor valued images interpolation technology. Journal of Image & Graphics 17(10):1197–1205 - PubMed
  29. Zhukov, L., & Barr, A. H. (2002). Oriented tensor reconstruction: tracing neural pathways from diffusion tensor MRI. Visualization, pp. 387–394. - PubMed

Publication Types

Grant support