Display options
Share it on

Immunology. 2021 Dec 22; doi: 10.1111/imm.13441. Epub 2021 Dec 22.

Double-negative T cells: Setting the stage for disease control or progression.

Immunology

Teresiama Velikkakam, Kenneth J Gollob, Walderez Ornelas Dutra

Affiliations

  1. Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
  2. Pós-graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
  3. Hospital Israelita Albert Einsten, São Paulo, Brazil.
  4. Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais - INCT-DT, Belo Horizonte, Brazil.

PMID: 34939192 DOI: 10.1111/imm.13441

Abstract

Double-negative (DN) T cells are present at relatively low frequencies in human peripheral blood, and are characterized as expressing the alpha-beta or gamma-delta T-cell receptor (TCR), but not the CD4 nor the CD8 co-receptors. Despite their low frequencies, these cells are potent producers of cytokines and, thus, are key orchestrators of immune responses. DN T cells were initially associated with induction of peripheral immunological tolerance and immunomodulatory activities related to disease prevention. However, other studies demonstrated that these cells can also display effector functions associated with pathology development. This apparent contradiction highlighted the heterogeneity of the DN T-cell population. Here, we review phenotypic and functional characteristics of DN T cells, emphasizing their role in human diseases. The need for developing biomarkers to facilitate the translation of studies from animal models to humans will also be discussed. Finally, we will examine DN T cells as promising therapeutic targets to prevent or inhibit human disease development.

© 2022 John Wiley & Sons Ltd.

Keywords: cancer; double-negative T cells; immunoregulation; inflammatory diseases; parasitic diseases

References

  1. Ciofani M, Zúñiga-Pflücker JC. The thymus as an inductive site for T lymphopoiesis. Annu Rev Cell Dev Biol. 2007;23:463-93. - PubMed
  2. Godfrey DI, Rossjohn J, McCluskey J. The fidelity, occasional promiscuity, and versatility of T cell receptor recognition. Immunity. 2008;28:304-14. - PubMed
  3. Borst J, van Dongen JJ, Bolhuis RL, Peters PJ, Hafler DA, de Vries E, et al. Distinct molecular forms of human T cell receptor gamma/delta detected on viable T cells by a monoclonal antibody. J Exp Med. 1988;167:1625-44. - PubMed
  4. Brenner MB, McLean J, Scheft H, Warnke RA, Jones N, Strominger JL. Characterization and expression of the human alpha beta T cell receptor by using a framework monoclonal antibody. J Immunol. 1987;138:1502-9. - PubMed
  5. Fehling HJ, Krotkova A, Saint-Ruf C, von Boehmer H. Crucial role of the pre-T-cell receptor alpha gene in development of alpha beta but not gamma delta T cells. Nature. 1995;375:795-8. - PubMed
  6. Burnet M. Auto-immune disease. I. Modern immunological concepts. Br Med J. 1959;2:645-50. - PubMed
  7. Martina MN, Noel S, Saxena A, Rabb H, Hamad AR. Double negative (DN) αβ T cells: misperception and overdue recognition. Immunol Cell Biol. 2015;93:305-10. - PubMed
  8. Cron RQ, Gajewski TF, Sharrow SO, Fitch FW, Matis LA, Bluestone JA. Phenotypic and functional analysis of murine CD3+, CD4-, CD8- TCR-gamma delta-expressing peripheral T cells. J Immunol. 1989;142:3754-62. - PubMed
  9. Casorati G, De Libero G, Lanzavecchia A, Migone N. Molecular analysis of human gamma/delta+ clones from thymus and peripheral blood. J Exp Med. 1989;170:1521-35. - PubMed
  10. Dik WA, Pike-Overzet K, Weerkamp F, de Ridder D, de Haas EF, Baert MR, et al. New insights on human T cell development by quantitative T cell receptor gene rearrangement studies and gene expression profiling. J Exp Med. 2005;201:1715-23. - PubMed
  11. Joachims ML, Chain JL, Hooker SW, Knott-Craig CJ, Thompson LF. Human alpha beta and gamma delta thymocyte development: TCR gene rearrangements, intracellular TCR beta expression, and gamma delta developmental potential-differences between men and mice. J Immunol. 2006;176:1543-52. - PubMed
  12. Pobezinsky LA, Angelov GS, Tai X, Jeurling S, Van Laethem F, Feigenbaum L, et al. Clonal deletion and the fate of autoreactive thymocytes that survive negative selection. Nat Immunol. 2012;13:569-78. - PubMed
  13. Mixter PF, Russell JQ, Morrissette GJ, Charland C, Aleman-Hoey D, Budd RC. A model for the origin of TCR-alphabeta+ CD4-CD8- B220+ cells based on high affinity TCR signals. J Immunol. 1999;162:5747-56. - PubMed
  14. Johansson M, Lycke N. A unique population of extrathymically derived alpha beta TCR+CD4-CD8- T cells with regulatory functions dominates the mouse female genital tract. J Immunol. 2003;170:1659-66. - PubMed
  15. Ford MS, Zhang ZX, Chen W, Zhang L. Double-negative T regulatory cells can develop outside the thymus and do not mature from CD8+ T cell precursors. J Immunol. 2006;177:2803-9. - PubMed
  16. Yamada Y, Fujita M, Suzuki H, Atogami S, Sohda H, Murata K, et al. Established IL-2-dependent double-negative (CD4- CD8-) TCR alpha beta/CD3+ ATL cells: induction of CD4 expression. Br J Haematol. 1994;88:234-41. - PubMed
  17. Zhang D, Yang W, Degauque N, Tian Y, Mikita A, Zheng XX. New differentiation pathway for double-negative regulatory T cells that regulates the magnitude of immune responses. Blood. 2007;109:4071-9. - PubMed
  18. Grishkan IV, Ntranos A, Calabresi PA, Gocke AR. Helper T cells down-regulate CD4 expression upon chronic stimulation giving rise to double-negative T cells. Cell Immunol. 2013;284(1-2):68-74. - PubMed
  19. Crispín JC, Oukka M, Bayliss G, Cohen RA, Van Beek CA, Stillman IE, et al. Expanded double negative T cells in patients with systemic lupus erythematosus produce IL-17 and infiltrate the kidneys. J Immunol. 2008;181:8761-6. - PubMed
  20. Crispín JC, Tsokos GC. Human TCR-alpha beta+ CD4- CD8- T cells can derive from CD8+ T cells and display an inflammatory effector phenotype. J Immunol. 2009;183:4675-81. - PubMed
  21. Kappes DJ, He X. CD4-CD8 lineage commitment: an inside view. Nat Immunol. 2005;6:761-6. - PubMed
  22. D'Acquisto F, Crompton T. CD3+CD4-CD8- (double negative) T cells: saviours or villains of the immune response? Biochem Pharmacol. 2011;82:333-40. - PubMed
  23. Godfrey DI, Hammond KJ, Poulton LD, Smyth MJ, Baxter AG. NKT cells: facts, functions and fallacies. Immunol Today. 2000;21:573-83. - PubMed
  24. Hammond KJ, Pelikan SB, Crowe NY, Randle-Barrett E, Nakayama T, Taniguchi M, et al. NKT cells are phenotypically and functionally diverse. Eur J Immunol. 1999;29:3768-81. - PubMed
  25. Krovi SH, Gapin L. Invariant natural killer T cell subsets-more than just developmental intermediates. Front Immunol. 2018;9:1393. - PubMed
  26. Godfrey DI, Stankovic S, Baxter AG. Raising the NKT cell family. Nat Immunol. 2010;11:197-206. - PubMed
  27. Cui J, Shin T, Kawano T, Sato H, Kondo E, Toura I, et al. Requirement for Valpha14 NKT cells in IL-12-mediated rejection of tumors. Science. 1997;278:1623-6. - PubMed
  28. Jahng A, Maricic I, Aguilera C, Cardell S, Halder RC, Kumar V. Prevention of autoimmunity by targeting a distinct, noninvariant CD1d-reactive T cell population reactive to sulfatide. J Exp Med. 2004;199:947-57. - PubMed
  29. Torina A, Guggino G, La Manna MP, Sireci G. The Janus Face of NKT cell function in autoimmunity and infectious diseases. Int J Mol Sci. 2018;19:440. - PubMed
  30. Zlotnik A, Godfrey DI, Fischer M, Suda T. Cytokine production by mature and immature CD4-CD8- T cells. Alpha beta-T cell receptor+ CD4-CD8- T cells produce IL-4. J Immunol. 1992;149:1211-5. - PubMed
  31. Fischer K, Voelkl S, Heymann J, Przybylski GK, Mondal K, Laumer M, et al. Isolation and characterization of human antigen-specific TCR alpha beta+ CD4(-)CD8- double-negative regulatory T cells. Blood. 2005;105:2828-35. - PubMed
  32. Mou D, Espinosa J, Lo DJ, Kirk AD. CD28 negative T cells: is their loss our gain? Am J Transplant. 2014;14:2460-6. - PubMed
  33. Li H, Adamopoulos IE, Moulton VR, Stillman IE, Herbert Z, Moon JJ, et al. Systemic lupus erythematosus favors the generation of IL-17 producing double negative T cells. Nat Commun. 2020;11:2859. - PubMed
  34. Rodríguez-Rodríguez N, Apostolidis SA, Fitzgerald L, Meehan BS, Corbett AJ, Martín-Villa JM, et al. Pro-inflammatory self-reactive T cells are found within murine TCR-αβ(+) CD4(-) CD8(-) PD-1(+) cells. Eur J Immunol. 2016;46:1383-91. - PubMed
  35. Rodríguez-Rodríguez N, Apostolidis SA, Penaloza-MacMaster P, Martín Villa JM, Barouch DH, Tsokos GC, et al. Programmed cell death 1 and Helios distinguish TCR-αβ+ double-negative (CD4-CD8-) T cells that derive from self-reactive CD8 T cells. J Immunol. 2015;194:4207-14. - PubMed
  36. Zhang ZX, Yang L, Young KJ, DuTemple B, Zhang L. Identification of a previously unknown antigen-specific regulatory T cell and its mechanism of suppression. Nat Med. 2000;6:782-9. - PubMed
  37. Nedellec S, Bonneville M, Scotet E. Human Vgamma9Vdelta2 T cells: from signals to functions. Semin Immunol. 2010;22:199-206. - PubMed
  38. Voelkl S, Gary R, Mackensen A. Characterization of the immunoregulatory function of human TCR-αβ+ CD4- CD8- double-negative T cells. Eur J Immunol. 2011;41:739-48. - PubMed
  39. Tilloy F, Treiner E, Park SH, Garcia C, Lemonnier F, de la Salle H, et al. An invariant T cell receptor alpha chain defines a novel TAP-independent major histocompatibility complex class Ib-restricted alpha/beta T cell subpopulation in mammals. J Exp Med. 1999;189:1907-21. - PubMed
  40. Brozova J, Karlova I, Novak J. Analysis of the phenotype and function of the subpopulations of mucosal-associated invariant T cells. Scand J Immunol. 2016;84:245-51. - PubMed
  41. Meierovics A, Yankelevich WJ, Cowley SC. MAIT cells are critical for optimal mucosal immune responses during in vivo pulmonary bacterial infection. Proc Natl Acad Sci USA. 2013;110:E3119-28. - PubMed
  42. Parrot T, Gorin JB, Ponzetta A, Maleki KT, Kammann T, Emgård J, et al. MAIT cell activation and dynamics associated with COVID-19 disease severity. Sci Immunol. 2020;5:eabe1670. - PubMed
  43. Sobkowiak MJ, Davanian H, Heymann R, Gibbs A, Emgård J, Dias J, et al. Tissue-resident MAIT cell populations in human oral mucosa exhibit an activated profile and produce IL-17. Eur J Immunol. 2019;49:133-43. - PubMed
  44. Petley EV, Koay HF, Henderson MA, Sek K, Todd KL, Keam SP, et al. MAIT cells regulate NK cell-mediated tumor immunity. Nat Commun. 2021;12:4746. - PubMed
  45. Lu Z, Zhu M, Marley JL, Bi K, Wang K, Zhai M, et al. The combined action of monocytic myeloid-derived suppressor cells and mucosal-associated invariant T cells promotes the progression of cervical cancer. Int J Cancer. 2021;148:1499-507. - PubMed
  46. Rudak PT, Choi J, Haeryfar SMM. MAIT cell-mediated cytotoxicity: roles in host defense and therapeutic potentials in infectious diseases and cancer. J Leukoc Biol. 2018;104:473-86. - PubMed
  47. Nel I, Beaudoin L, Gouda Z, Rousseau C, Soulard P, Rouland M, et al. MAIT cell alterations in adults with recent-onset and long-term type 1 diabetes. Diabetologia. 2021;64:2306-21. - PubMed
  48. Böttcher K, Rombouts K, Saffioti F, Roccarina D, Rosselli M, Hall A, et al. MAIT cells are chronically activated in patients with autoimmune liver disease and promote profibrogenic hepatic stellate cell activation. Hepatology. 2018;68:172-86. - PubMed
  49. Chiba A, Murayama G, Miyake S. Mucosal-associated invariant T cells in autoimmune diseases. Front Immunol. 2018;9:1333. - PubMed
  50. Paul S, Singh AK, Shilpi, Lal G. Phenotypic and functional plasticity of gamma-Delta (γδ) T cells in inflammation and tolerance. Int Rev Immunol. 2014;33:537-58. - PubMed
  51. Kalyan S, Kabelitz D. Defining the nature of human γδ T cells: a biographical sketch of the highly empathetic. Cell Mol Immunol. 2013;10:21-9. - PubMed
  52. Beetz S, Marischen L, Kabelitz D, Wesch D. Human gamma delta T cells: candidates for the development of immunotherapeutic strategies. Immunol Res. 2007;37:97-111. - PubMed
  53. Qi C, Wang Y, Li P, Zhao J. Gamma delta T cells and their pathogenic role in psoriasis. Front Immunol. 2021;12:627139. - PubMed
  54. Muller CKS, Spagnuolo J, Audigé A, Chancellor A, Russenberger D, Scherrer AU, et al. Immunophenotypic characterization of TCR γδ T cells and MAIT cells in HIV-infected individuals developing Hodgkin's lymphoma. Infect Agent Cancer. 2021;16:24. - PubMed
  55. Bonneville M, O'Brien RL, Born WK. Gammadelta T cell effector functions: a blend of innate programming and acquired plasticity. Nat Rev Immunol. 2010;10:467-78. - PubMed
  56. Yang L, Zhu Y, Tian D, Wang S, Guo J, Sun G, et al. Transcriptome landscape of double negative T cells by single-cell RNA sequencing. J Autoimmun. 2021;121:102653. - PubMed
  57. Reimann J. Double-negative (CD4-CD8-), TCR alpha beta-expressing, peripheral T cells. Scand J Immunol. 1991;34:679-88. - PubMed
  58. Strober S, Dejbachsh-Jones S, Van Vlasselaer P, Duwe G, Salimi S, Allison JP. Cloned natural suppressor cell lines express the CD3+CD4-CD8- surface phenotype and the alpha, beta heterodimer of the T cell antigen receptor. J Immunol. 1989;143:1118-22. - PubMed
  59. Porcelli S, Morita CT, Brenner MB. CD1b restricts the response of human CD4-8- T lymphocytes to a microbial antigen. Nature. 1992;360:593-7. - PubMed
  60. De Libero G, Mori L. Recognition of lipid antigens by T cells. Nat Rev Immunol. 2005;5:485-96. - PubMed
  61. Sugita M, Moody DB, Jackman RM, Grant EP, Rosat JP, Behar SM, et al. CD1-a new paradigm for antigen presentation and T cell activation. Clin Immunol Immunopathol. 1998;87:8-14. - PubMed
  62. Joly E, Hudrisier D. What is trogocytosis and what is its purpose? Nat Immunol. 2003;4:815. - PubMed
  63. Hudson L, Sprent J, Miller JF, Playfair JH. B cell-derived immunoglobulin on activated mouse T lymphocytes. Nature. 1974;251:60-2. - PubMed
  64. Ford McIntyre MS, Young KJ, Gao J, Joe B, Zhang L. Cutting edge: in vivo trogocytosis as a mechanism of double negative regulatory T cell-mediated antigen-specific suppression. J Immunol. 2008;181:2271-5. - PubMed
  65. Voelkl S, Moore TV, Rehli M, Nishimura MI, Mackensen A, Fischer K. Characterization of MHC class-I restricted TCRalphabeta+ CD4- CD8- double negative T cells recognizing the gp100 antigen from a melanoma patient after gp100 vaccination. Cancer Immunol Immunother. 2009;58:709-18. - PubMed
  66. Tian D, Yang L, Wang S, Zhu Y, Shi W, Zhang C, et al. Double negative T cells mediate Lag3-dependent antigen-specific protection in allergic asthma. Nat Commun. 2019;10:4246. - PubMed
  67. Huard B, Prigent P, Tournier M, Bruniquel D, Triebel F. CD4/major histocompatibility complex class II interaction analyzed with CD4- and lymphocyte activation gene-3 (LAG-3)-Ig fusion proteins. Eur J Immunol. 1995;25:2718-21. - PubMed
  68. Mohamood AS, Bargatze D, Xiao Z, Jie C, Yagita H, Ruben D, et al. Fas-mediated apoptosis regulates the composition of peripheral alphabeta T cell repertoire by constitutively purging out double negative T cells. PLoS One. 2008;3:e3465. - PubMed
  69. Brandt D, Hedrich CM. TCRαβ + CD3 + CD4 - CD8 - (double negative) T cells in autoimmunity. Autoimmun Rev. 2018;17:422-30. - PubMed
  70. El-Sayed ZA, El-Owaidy RH, Mohamed NL, Shehata BA. Alpha beta double negative T cells in children with systemic lupus erythematosus: the relation to disease activity and characteristics. Mod Rheumatol. 2018;28:654-60. - PubMed
  71. Liu MF, Yang CY, Chao SC, Li JS, Weng TH, Lei HY. Distribution of double-negative (CD4- CD8-, DN) T subsets in blood and synovial fluid from patients with rheumatoid arthritis. Clin Rheumatol. 1999;18:227-31. - PubMed
  72. Liu T, Cong M, Sun G, Wang P, Tian Y, Shi W, et al. Combination of double negative T cells and anti-thymocyte serum reverses type 1 diabetes in NOD mice. J Transl Med. 2016;14:57. - PubMed
  73. Hayashi Y, Haneji N, Hamano H. Pathogenesis of Sjögren's syndrome-like autoimmune lesions in MRL/lpr mice. Pathol Int. 1994;44:559-68. - PubMed
  74. Crispin JC, Hedrich CM, Suárez-Fueyo A, Comte D, Tsokos GC. SLE-associated defects promote altered T cell function. Crit Rev Immunol. 2017;37:39-58. - PubMed
  75. Sieling PA, Porcelli SA, Duong BT, Spada F, Bloom BR, Diamond B, et al. Human double-negative T cells in systemic lupus erythematosus provide help for IgG and are restricted by CD1c. J Immunol. 2000;165:5338-44. - PubMed
  76. Shivakumar S, Tsokos GC, Datta SK. T cell receptor alpha/beta expressing double-negative (CD4-/CD8-) and CD4+ T helper cells in humans augment the production of pathogenic anti-DNA autoantibodies associated with lupus nephritis. J Immunol. 1989;143:103-12. - PubMed
  77. Tarbox JA, Keppel MP, Topcagic N, Mackin C, Ben Abdallah M, Baszis KW, et al. Elevated double negative T cells in pediatric autoimmunity. J Clin Immunol. 2014;34:594-9. - PubMed
  78. Fisher GH, Rosenberg FJ, Straus SE, Dale JK, Middleton LA, Lin AY, et al. Dominant interfering Fas gene mutations impair apoptosis in a human autoimmune lymphoproliferative syndrome. Cell. 1995;81:935-46. - PubMed
  79. Liapis K, Tsagarakis NJ, Panitsas F, Taparkou A, Liapis I, Roubakis C, et al. Causes of double-negative T-cell lymphocytosis in children and adults. J Clin Pathol. 2020;73:431-8. - PubMed
  80. Voulgarelis M, Tzioufas AG. Pathogenetic mechanisms in the initiation and perpetuation of Sjögren's syndrome. Nat Rev Rheumatol. 2010;6:529-37. - PubMed
  81. Manoussakis MN, Georgopoulou C, Zintzaras E, Spyropoulou M, Stavropoulou A, Skopouli FN, et al. Sjögren's syndrome associated with systemic lupus erythematosus: clinical and laboratory profiles and comparison with primary Sjögren's syndrome. Arthritis Rheum. 2004;50:882-91. - PubMed
  82. Alunno A, Carubbi F, Bartoloni E, Bistoni O, Caterbi S, Cipriani P, et al. Unmasking the pathogenic role of IL-17 axis in primary Sjögren's syndrome: a new era for therapeutic targeting? Autoimmun Rev. 2014;13:1167-73. - PubMed
  83. Brandt D, Sergon M, Abraham S, Mäbert K, Hedrich CM. TCR. Clin Immunol. 2017;181:51-9. - PubMed
  84. Meng H, Zhao H, Cao X, Hao J, Zhang H, Liu Y, et al. Double-negative T cells remarkably promote neuroinflammation after ischemic stroke. Proc Natl Acad Sci USA. 2019;116:5558-63. - PubMed
  85. Chen W, Ford MS, Young KJ, Zhang L. Infusion of in vitro-generated DN T regulatory cells induces permanent cardiac allograft survival in mice. Transplant Proc. 2003;35:2479-80. - PubMed
  86. Achita P, Dervovic D, Ly D, Lee JB, Haug T, Joe B, et al. Infusion of ex-vivo expanded human TCR-αβ. Clin Exp Immunol. 2018;193:386-99. - PubMed
  87. Li W, Tian Y, Li Z, Gao J, Shi W, Zhu J, et al. Ex vivo converted double negative T cells suppress activated B cells. Int Immunopharmacol. 2014;20:164-9. - PubMed
  88. Zhang D, Zhang W, Ng TW, Wang Y, Liu Q, Gorantla V, et al. Adoptive cell therapy using antigen-specific CD4⁻CD8⁻T regulatory cells to prevent autoimmune diabetes and promote islet allograft survival in NOD mice. Diabetologia. 2011;54:2082-92. - PubMed
  89. Sørensen J, Buschard K, Brogren CH. The preventive role of type 2 NKT cells in the development of type 1 diabetes. APMIS. 2014;122:167-82. - PubMed
  90. Beaudoin L, Diana J, Ghazarian L, Simoni Y, Boitard C, Lehuen A. Plasmacytoid dendritic cells license regulatory T cells, upon iNKT-cell stimulation, to prevent autoimmune diabetes. Eur J Immunol. 2014;44:1454-66. - PubMed
  91. Vinay DS, Ryan EP, Pawelec G, Talib WH, Stagg J, Elkord E, et al. Immune evasion in cancer: mechanistic basis and therapeutic strategies. Semin Cancer Biol. 2015;35(Suppl):S185-98. - PubMed
  92. Soares F, Chen B, Lee JB, Ahmed M, Ly D, Tin E, et al. CRISPR screen identifies genes that sensitize AML cells to double-negative T-cell therapy. Blood. 2021;137:2171-81. - PubMed
  93. Li Y, Dong K, Fan X, Xie J, Wang M, Fu S, et al. DNT cell-based immunotherapy: progress and applications. J Cancer. 2020;11:3717-24. - PubMed
  94. Caccamo N, Dieli F, Meraviglia S, Guggino G, Salerno A. Gammadelta T cell modulation in anticancer treatment. Curr Cancer Drug Targets. 2010;10:27-36. - PubMed
  95. Gomes AQ, Martins DS, Silva-Santos B. Targeting γδ T lymphocytes for cancer immunotherapy: from novel mechanistic insight to clinical application. Cancer Res. 2010;70:10024-7. - PubMed
  96. Lu Y, Hu P, Zhou H, Yang Z, Sun YU, Hoffman RM, et al. Double-negative T cells inhibit proliferation and invasion of human pancreatic cancer cells in co-culture. Anticancer Res. 2019;39:5911-8. - PubMed
  97. Fang L, Ly D, Wang SS, Lee JB, Kang H, Xu H, et al. Targeting late-stage non-small cell lung cancer with a combination of DNT cellular therapy and PD-1 checkpoint blockade. J Exp Clin Cancer Res. 2019;38:123. - PubMed
  98. Lee J, Minden MD, Chen WC, Streck E, Chen B, Kang H, et al. Allogeneic human double negative T cells as a novel immunotherapy for acute myeloid leukemia and its underlying mechanisms. Clin Cancer Res. 2018;24:370-82. - PubMed
  99. Ponzetta A, Carriero R, Carnevale S, Barbagallo M, Molgora M, Perucchini C, et al. Neutrophils driving unconventional T cells mediate resistance against murine sarcomas and selected human tumors. Cell. 2019;178:346-360.e324. - PubMed
  100. Chang JC, Zhang L, Distler SG, Ziang G, Kaplan AM. Characterization and function of CD3+ CD4- CD8- TcR-alpha beta bearing cells infiltrating the lung during the immune response. Reg Immunol. 1992;4:25-33. - PubMed
  101. Neyt K, GeurtsvanKessel CH, Lambrecht BN. Double-negative T resident memory cells of the lung react to influenza virus infection via CD11c(hi) dendritic cells. Mucosal Immunol. 2016;9:999-1014. - PubMed
  102. Cowley SC, Meierovics AI, Frelinger JA, Iwakura Y, Elkins KL. Lung CD4-CD8- double-negative T cells are prominent producers of IL-17A and IFN-gamma during primary respiratory murine infection with Francisella tularensis live vaccine strain. J Immunol. 2010;184:5791-801. - PubMed
  103. Pinheiro MB, Antonelli LR, Sathler-Avelar R, Vitelli-Avelar DM, Spindola-de-Miranda S, Guimarães TM, et al. CD4-CD8-αβ and γδ T cells display inflammatory and regulatory potentials during human tuberculosis. PLoS One. 2012;7:e50923. - PubMed
  104. Singleterry WL, Henderson H, Cruse JM. Depletion of pro-inflammatory CD161(+) double negative (CD3(+)CD4(-)CD8(-)) T cells in AIDS patients is ameliorated by expansion of the γδ T cell population. Exp Mol Pathol. 2012;92:155-9. - PubMed
  105. Petitjean G, Chevalier MF, Tibaoui F, Didier C, Manea ME, Liovat AS, et al. Level of double negative T cells, which produce TGF-β and IL-10, predicts CD8 T-cell activation in primary HIV-1 infection. AIDS. 2012;26:139-48. - PubMed
  106. Sundaravaradan V, Mir KD, Sodora DL. Double-negative T cells during HIV/SIV infections: potential pinch hitters in the T-cell lineup. Curr Opin HIV AIDS. 2012;7:164-71. - PubMed
  107. Meziane O, Salahuddin S, Pham TNQ, Farnos O, Pagliuzza A, Olivenstein R, et al. HIV infection and persistence in pulmonary mucosal double negative T cells. J Virol. 2020;94:e01788-20. - PubMed
  108. Lai Q, Ma S, Ge J, Huang Z, Huang X, Jiang X, et al. TCRγδ(+)CD4(-)CD8(-) T cells suppress the CD8(+) T-cell response to hepatitis B virus peptides, and are associated with viral control in chronic hepatitis B. PLoS One. 2014;9:e88475. - PubMed
  109. Wang Y, Lu W, Li A, Sun Z, Wang L. Elevated CD3 low double negative T lymphocyte is associated with pneumonia and its severity in pediatric patients. PeerJ. 2018;6:e6114. - PubMed
  110. Qin G, Liu Y, Zheng J, Xiang Z, Ng IH, Malik Peiris JS, et al. Phenotypic and functional characterization of human γδ T-cell subsets in response to influenza A viruses. J Infect Dis. 2012;205:1646-53. - PubMed
  111. Bonneville M, Scotet E. Human Vgamma9Vdelta2 T cells: promising new leads for immunotherapy of infections and tumors. Curr Opin Immunol. 2006;18:539-46. - PubMed
  112. Behr C, Dubois P. Preferential expansion of V gamma 9 V delta 2 T cells following stimulation of peripheral blood lymphocytes with extracts of Plasmodium falciparum. Int Immunol. 1992;4:361-6. - PubMed
  113. Dantzler KW, Jagannathan P. γδ T cells in antimalarial immunity: new insights into their diverse functions in protection and tolerance. Front Immunol. 2018;9:2445. - PubMed
  114. Costa G, Loizon S, Guenot M, Mocan I, Halary F, de Saint-Basile G, et al. Control of Plasmodium falciparum erythrocytic cycle: γδ T cells target the red blood cell-invasive merozoites. Blood. 2011;118:6952-62. - PubMed
  115. Ho M, Webster HK, Tongtawe P, Pattanapanyasat K, Weidanz WP. Increased gamma delta T cells in acute Plasmodium falciparum malaria. Immunol Lett. 1990;25(1-3):139-41. - PubMed
  116. Cordeiro FD, Martins-Filho OA, Da Costa Rocha MO, Adad SJ, Corrêa-Oliveira R, Romanha AJ. Anti-Trypanosoma cruzi immunoglobulin G1 can be a useful tool for diagnosis and prognosis of human Chagas' disease. Clin Diagn Lab Immunol. 2001;8:112-8. - PubMed
  117. Farouk SE, Mincheva-Nilsson L, Krensky AM, Dieli F, Troye-Blomberg M. Gamma delta T cells inhibit in vitro growth of the asexual blood stages of Plasmodium falciparum by a granule exocytosis-dependent cytotoxic pathway that requires granulysin. Eur J Immunol. 2004;34:2248-56. - PubMed
  118. Junqueira C, Polidoro RB, Castro G, Absalon S, Liang Z, Sen Santara S, et al. γδ T cells suppress Plasmodium falciparum blood-stage infection by direct killing and phagocytosis. Nat Immunol. 2021;22:347-57. - PubMed
  119. Jagannathan P, Lutwama F, Boyle MJ, Nankya F, Farrington LA, McIntyre TI, et al. Vδ2+ T cell response to malaria correlates with protection from infection but is attenuated with repeated exposure. Sci Rep. 2017;7:11487. - PubMed
  120. Antonelli LR, Dutra WO, Oliveira RR, Torres KC, Guimarães LH, Bacellar O, et al. Disparate immunoregulatory potentials for double-negative (CD4- CD8-) alpha beta and gamma delta T cells from human patients with cutaneous leishmaniasis. Infect Immun. 2006;74:6317-23. - PubMed
  121. Gollob KJ, Antonelli LR, Faria DR, Keesen TS, Dutra WO. Immunoregulatory mechanisms and CD4-CD8- (double negative) T cell subpopulations in human cutaneous leishmaniasis: a balancing act between protection and pathology. Int Immunopharmacol. 2008;8:1338-43. - PubMed
  122. Alexandre-Pires G, de Brito MT, Algueró C, Martins C, Rodrigues OR, da Fonseca IP, et al. Canine leishmaniasis. Immunophenotypic profile of leukocytes in different compartments of symptomatic, asymptomatic and treated dogs. Vet Immunol Immunopathol. 2010;137(3-4):275-83. - PubMed
  123. Lezama-Dávila CM, Gallagher G. CD4+, CD8+ and CD4- CD8- T cell-subsets can confer protection against Leishmania m. mexicana infection. Mem Inst Oswaldo Cruz. 1995;90:51-8. - PubMed
  124. Mou Z, Liu D, Okwor I, Jia P, Orihara K, Uzonna JE. MHC class II restricted innate-like double negative T cells contribute to optimal primary and secondary immunity to Leishmania major. PLoS Pathog. 2014;10:e1004396. - PubMed
  125. Ferraz R, Cunha CF, Pimentel MIF, Lyra MR, Pereira-Da-Silva T, Schubach AO, et al. CD3 + CD4 neg CD8 neg (double negative) T lymphocytes and NKT cells as the main cytotoxic-related-CD107a + cells in lesions of cutaneous leishmaniasis caused by Leishmania (Viannia) braziliensis. Parasit Vectors. 2017;10:219. - PubMed
  126. Sardinha LR, Elias RM, Mosca T, Bastos KR, Marinho CR, D'Império Lima MR, et al. Contribution of NK, NK T, gamma delta T, and alpha beta T cells to the gamma interferon response required for liver protection against Trypanosoma cruzi. Infect Immun. 2006;74:2031-42. - PubMed
  127. Nagib PR, Dutra WO, Chiari E, Machado CR. Trypanosoma cruzi: populations bearing opposite virulence induce differential expansion of circulating CD3+CD4-CD8- T cells and cytokine serum levels in young and adult rats. Exp Parasitol. 2007;116:366-74. - PubMed
  128. Villani FN, Rocha MO, Nunes MoC, Antonelli LR, Magalhães LM, dos Santos JS, et al. Trypanosoma cruzi-induced activation of functionally distinct αβ and γδ CD4- CD8- T cells in individuals with polar forms of Chagas' disease. Infect Immun. 2010;78:4421-30. - PubMed
  129. Passos LS, Villani FN, Magalhães LM, Gollob KJ, Antonelli LR, Nunes MC, et al. Blocking of CD1d decreases Trypanosoma cruzi-induced activation of CD4-CD8- T cells and modulates the inflammatory response in patients with Chagas heart disease. J Infect Dis. 2016;214:935-44. - PubMed

Publication Types

Grant support