Display options
Share it on

Nat Commun. 2021 Dec 16;12(1):7322. doi: 10.1038/s41467-021-27586-w.

Induction of Rosette-to-Lumen stage embryoids using reprogramming paradigms in ESCs.

Nature communications

Jan Langkabel, Arik Horne, Lorenzo Bonaguro, Lisa Holsten, Tatiana Hesse, Alexej Knaus, Yannick Riedel, Matthias Becker, Kristian Händler, Tarek Elmzzahi, Kevin Bassler, Nico Reusch, Leon Harootoonovtch Yeghiazarian, Tal Pecht, Adem Saglam, Thomas Ulas, Anna C Aschenbrenner, Franziska Kaiser, Caroline Kubaczka, Joachim L Schultze, Hubert Schorle

Affiliations

  1. Institute of Pathology, Department of Developmental Pathology, University Hospital Bonn, University of Bonn, Bonn, Germany.
  2. Genomics and Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany.
  3. Systems Medicine, DZNE, Bonn, Germany and University of Bonn, Bonn, Germany.
  4. Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, University of Bonn, Bonn, Germany.
  5. PRECISE Platform for Single Cell Genomics and Epigenomics, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany and University of Bonn, Bonn, Germany.
  6. Molecular Immunology in Neurodegeneration, DZNE, Bonn, Germany.
  7. Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia.
  8. Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands.
  9. Institute of Pathology, Department of Developmental Pathology, University Hospital Bonn, University of Bonn, Bonn, Germany. [email protected].

PMID: 34916498 PMCID: PMC8677818 DOI: 10.1038/s41467-021-27586-w

Abstract

Blastocyst-derived stem cell lines were shown to self-organize into embryo-like structures in 3D cell culture environments. Here, we provide evidence that embryo-like structures can be generated solely based on transcription factor-mediated reprogramming of embryonic stem cells in a simple 3D co-culture system. Embryonic stem cells in these cultures self-organize into elongated, compartmentalized embryo-like structures reflecting aspects of the inner regions of the early post-implantation embryo. Single-cell RNA-sequencing reveals transcriptional profiles resembling epiblast, primitive-/visceral endoderm, and extraembryonic ectoderm of early murine embryos around E4.5-E5.5. In this stem cell-based embryo model, progression from rosette formation to lumenogenesis accompanied by progression from naïve- to primed pluripotency was observed within Epi-like cells. Additionally, lineage specification of primordial germ cells and distal/anterior visceral endoderm-like cells was observed in epiblast- or visceral endoderm-like compartments, respectively. The system presented in this study allows for fast and reproducible generation of embryo-like structures, providing an additional tool to study aspects of early embryogenesis.

© 2021. The Author(s).

References

  1. EMBO J. 1990 Jul;9(7):2185-95 - PubMed
  2. BMC Bioinformatics. 2013 Apr 15;14:128 - PubMed
  3. Curr Biol. 2003 Dec 2;13(23):2110-7 - PubMed
  4. Stem Cell Reports. 2018 Feb 13;10(2):461-476 - PubMed
  5. Dev Cell. 2005 Nov;9(5):639-50 - PubMed
  6. Cytokine Growth Factor Rev. 2005 Jun;16(3):251-63 - PubMed
  7. Elife. 2017 Feb 22;6: - PubMed
  8. Mol Cell Biol. 2002 May;22(9):3149-56 - PubMed
  9. Curr Biol. 2004 Apr 6;14(7):618-24 - PubMed
  10. Nat Cell Biol. 2020 May;22(5):534-545 - PubMed
  11. PLoS Biol. 2004 Feb;2(2):E30 - PubMed
  12. Development. 2018 Jun 18;145(12): - PubMed
  13. J Biol Chem. 2017 Jun 9;292(23):9840-9854 - PubMed
  14. Development. 2013 Apr;140(8):1665-75 - PubMed
  15. Development. 2002 May;129(10):2367-79 - PubMed
  16. Stem Cell Reports. 2021 May 11;16(5):1031-1038 - PubMed
  17. Dev Growth Differ. 1999 Dec;41(6):675-84 - PubMed
  18. Cell Stem Cell. 2009 Jun 5;4(6):487-92 - PubMed
  19. Bioinformatics. 2010 Oct 1;26(19):2438-44 - PubMed
  20. Dev Biol. 2001 Apr 15;232(2):484-92 - PubMed
  21. Dev Cell. 2006 Apr;10(4):451-9 - PubMed
  22. Nat Methods. 2020 Feb;17(2):159-162 - PubMed
  23. Cell Rep. 2016 Feb 9;14(5):1181-1194 - PubMed
  24. OMICS. 2012 May;16(5):284-7 - PubMed
  25. Nat Cell Biol. 2018 Aug;20(8):979-989 - PubMed
  26. Cell. 2005 Dec 2;123(5):917-29 - PubMed
  27. Nat Biotechnol. 2016 May;34(5):525-7 - PubMed
  28. Mol Endocrinol. 2000 Jul;14(7):1053-63 - PubMed
  29. Nature. 1981 Jul 9;292(5819):154-6 - PubMed
  30. Placenta. 2020 Jan 15;90:128-137 - PubMed
  31. Cell. 2011 Aug 19;146(4):519-32 - PubMed
  32. Nature. 2019 Feb;566(7745):490-495 - PubMed
  33. Nat Methods. 2013 Nov;10(11):1096-8 - PubMed
  34. Genes Dev. 1999 Feb 15;13(4):424-36 - PubMed
  35. Nature. 2018 May;557(7703):106-111 - PubMed
  36. Cell Rep. 2017 Aug 1;20(5):1215-1228 - PubMed
  37. Nature. 1990 Jun 21;345(6277):686-92 - PubMed
  38. Development. 2009 Mar;136(5):701-13 - PubMed
  39. Biol Reprod. 2010 Jan;82(1):214-23 - PubMed
  40. Dev Cell. 2012 Apr 17;22(4):887-901 - PubMed
  41. Cell Stem Cell. 2015 Nov 5;17(5):557-68 - PubMed
  42. Nat Cell Biol. 2021 Jan;23(1):49-60 - PubMed
  43. Nat Methods. 2017 Nov;14(11):1083-1086 - PubMed
  44. Mech Dev. 1999 Mar;81(1-2):199-203 - PubMed
  45. Dev Biol. 2015 Jan 1;397(1):77-88 - PubMed
  46. Mech Dev. 2009 Mar-Apr;126(3-4):117-27 - PubMed
  47. Mech Dev. 1999 Jul;85(1-2):167-72 - PubMed
  48. Science. 1998 Dec 11;282(5396):2072-5 - PubMed
  49. F1000Res. 2015 Dec 30;4:1521 - PubMed
  50. Nat Biotechnol. 2018 Jun;36(5):411-420 - PubMed
  51. Dev Biol. 2015 Jun 15;402(2):175-91 - PubMed
  52. Sci Rep. 2017 Dec 7;7(1):17156 - PubMed
  53. Nat Commun. 2016 Sep 02;7:12589 - PubMed
  54. Sci Rep. 2016 Dec 19;6:39457 - PubMed
  55. Mol Reprod Dev. 2010 Jan;77(1):3-18 - PubMed
  56. Development. 2006 Jan;133(2):319-29 - PubMed
  57. Nat Genet. 2001 Apr;27(4):412-6 - PubMed
  58. Nature. 2002 Jun 6;417(6889):664-7 - PubMed
  59. Cell. 2003 May 30;113(5):631-42 - PubMed
  60. Dev Biol. 2015 Apr 1;400(1):1-9 - PubMed
  61. Cell Rep. 2019 Mar 5;26(10):2593-2607.e3 - PubMed
  62. Genesis. 2007 Aug;45(8):508-17 - PubMed
  63. Dev Growth Differ. 2008 Sep;50(7):615-21 - PubMed
  64. Genes Dev. 2015 Jun 15;29(12):1239-55 - PubMed
  65. Genes Dev. 2004 Aug 1;18(15):1838-49 - PubMed
  66. J Exp Zool. 1957 Mar;134(2):207-37 - PubMed
  67. Proc Natl Acad Sci U S A. 2004 May 25;101(21):8204-8 - PubMed
  68. Development. 2001 Mar;128(5):753-65 - PubMed
  69. Sci Rep. 2019 Jul 15;9(1):10168 - PubMed
  70. Dev Biol. 2012 Jan 1;361(1):90-102 - PubMed
  71. Dev Cell. 2008 Oct;15(4):509-20 - PubMed
  72. Cell Stem Cell. 2008 Nov 6;3(5):543-54 - PubMed
  73. Front Endocrinol (Lausanne). 2018 Sep 27;9:570 - PubMed
  74. Development. 1992 Mar;114(3):755-68 - PubMed
  75. PLoS One. 2010 Sep 16;5(9): - PubMed
  76. Genes Dev. 2010 Feb 1;24(3):312-26 - PubMed
  77. Dev Cell. 2021 Feb 8;56(3):366-382.e9 - PubMed
  78. Development. 2005 Apr;132(7):1649-61 - PubMed
  79. Genes Dev. 2013 May 1;27(9):997-1002 - PubMed
  80. Elife. 2019 Sep 30;8: - PubMed
  81. Dev Biol. 2008 Jun 1;318(1):133-42 - PubMed
  82. Genome Res. 2016 Oct;26(10):1342-1354 - PubMed
  83. Science. 1995 Jan 13;267(5195):246-9 - PubMed
  84. Nat Commun. 2019 Jan 30;10(1):496 - PubMed
  85. Blood. 2016 Aug 25;128(8):e20-31 - PubMed
  86. Stem Cells Dev. 2016 Jul 1;25(13):959-74 - PubMed
  87. Nat Cell Biol. 2014 Jun;16(6):516-28 - PubMed
  88. Nat Protoc. 2013 Jun;8(6):1028-41 - PubMed
  89. Development. 2003 Oct;130(19):4527-37 - PubMed
  90. Philos Trans R Soc Lond B Biol Sci. 2014 Dec 5;369(1657): - PubMed

Publication Types