Display options
Share it on

Biophys J. 2021 Dec 21;120(24):5564-5574. doi: 10.1016/j.bpj.2021.11.013. Epub 2021 Nov 11.

Diverse role of decoys on emergence and precision of oscillations in a biomolecular clock.

Biophysical journal

Supravat Dey, Abhyudai Singh

Affiliations

  1. Department of Electrical and Computer Engineering, University of Delaware, Newark, Delaware. Electronic address: [email protected].
  2. Department of Electrical and Computer Engineering, University of Delaware, Newark, Delaware; Department of Biomedical Engineering, University of Delaware, Newark, Delaware.

PMID: 34774502 PMCID: PMC8715246 DOI: 10.1016/j.bpj.2021.11.013

Abstract

Biomolecular clocks are key drivers of oscillatory dynamics in diverse biological processes including cell-cycle regulation, circadian rhythms, and pattern formation during development. A minimal clock implementation is based on the classical Goodwin oscillator, in which a repressor protein inhibits its own synthesis via time-delayed negative feedback. Clock motifs, however, do not exist in isolation; its components are open to interacting with the complex environment inside cells. For example, there are ubiquitous high-affinity binding sites along the genome, known as decoys, where transcription factors such as repressor proteins can potentially interact. This binding affects the availability of transcription factors and has often been ignored in theoretical studies. How does such genomic decoy binding impact the clock's robustness and precision? To address this question, we systematically analyze deterministic and stochastic models of the Goodwin oscillator in the presence of reversible binding of the repressor to a finite number of decoy sites. Our analysis reveals that the relative stability of decoy-bound repressors compared to the free repressor plays distinct roles on the emergence and precision of oscillations. Interestingly, active degradation of the bound repressor can induce sustained oscillations that are otherwise absent without decoys. In contrast, decoy abundances can kill oscillation dynamics if the bound repressor is protected from degradation. Taking into account low copy-number fluctuations in clock components, we show that the degradation of the bound repressors enhances precision by attenuating noise in both the amplitude and period of oscillations. Overall, these results highlight the versatile role of otherwise hidden decoys in shaping the stochastic dynamics of biological clocks and emphasize the importance of synthetic decoys in designing robust clocks.

Copyright © 2021 Biophysical Society. Published by Elsevier Inc. All rights reserved.

References

  1. J Theor Biol. 2013 Oct 21;335:222-34 - PubMed
  2. Phys Rev Lett. 2007 Jun 1;98(22):228101 - PubMed
  3. J Theor Biol. 1968 Aug;20(2):202-8 - PubMed
  4. Proc Natl Acad Sci U S A. 2011 Oct 4;108(40):E784-93 - PubMed
  5. PLoS One. 2013 Aug 01;8(8):e69573 - PubMed
  6. Proc Natl Acad Sci U S A. 2005 Oct 11;102(41):14593-8 - PubMed
  7. Nature. 2013 Aug 29;500(7464):603-7 - PubMed
  8. Elife. 2016 Feb 13;5: - PubMed
  9. Cell. 1997 Nov 28;91(5):639-48 - PubMed
  10. Nature. 2021 Jan;589(7842):431-436 - PubMed
  11. Proc Natl Acad Sci U S A. 2006 Jul 18;103(29):10840-5 - PubMed
  12. Semin Cell Dev Biol. 2020 Mar;99:12-19 - PubMed
  13. Proc Natl Acad Sci U S A. 2002 Apr 30;99(9):5988-92 - PubMed
  14. Science. 2008 Jul 4;321(5885):126-9 - PubMed
  15. Trends Genet. 2009 Oct;25(10):434-40 - PubMed
  16. Nature. 2000 Jan 20;403(6767):335-8 - PubMed
  17. Acta Biotheor. 2021 Dec;69(4):857-874 - PubMed
  18. Nucleic Acids Res. 2014 Jun;42(11):7039-46 - PubMed
  19. ACS Synth Biol. 2016 Apr 15;5(4):321-33 - PubMed
  20. Proc Natl Acad Sci U S A. 1980 Jan;77(1):462-6 - PubMed
  21. Nature. 2016 Oct 27;538(7626):514-517 - PubMed
  22. iScience. 2020 Jun 26;23(6):101186 - PubMed
  23. Ann N Y Acad Sci. 2005 Nov;1058:128-39 - PubMed
  24. Proc Natl Acad Sci U S A. 2012 Oct 23;109(43):17454-9 - PubMed
  25. Science. 2001 Jan 19;291(5503):490-3 - PubMed
  26. Proc Natl Acad Sci U S A. 1995 Jun 20;92(13):5855-9 - PubMed
  27. FEBS Lett. 2012 Aug 31;586(18):2955-65 - PubMed
  28. Proc Natl Acad Sci U S A. 2020 May 12;117(19):10350-10356 - PubMed
  29. Science. 2020 Feb 14;367(6479):800-806 - PubMed
  30. Nat Rev Mol Cell Biol. 2008 Dec;9(12):981-91 - PubMed
  31. Mol Syst Biol. 2006;2:2006.0033 - PubMed
  32. ACS Synth Biol. 2018 Jun 15;7(6):1481-1487 - PubMed
  33. Curr Biol. 2003 Aug 19;13(16):1398-408 - PubMed
  34. Nucleic Acids Res. 2021 Jan 25;49(2):1163-1172 - PubMed
  35. PLoS Comput Biol. 2017 Apr 17;13(4):e1005491 - PubMed
  36. Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Dec;92(6):062712 - PubMed
  37. Mol Cell Biol. 1998 Oct;18(10):5670-7 - PubMed
  38. Nature. 2002 Aug 29;418(6901):935-41 - PubMed
  39. Proc Natl Acad Sci U S A. 2014 Feb 11;111(6):2391-6 - PubMed
  40. ACS Synth Biol. 2012 Feb 17;1(2):65-72 - PubMed
  41. J R Soc Interface. 2016 Sep;13(122): - PubMed
  42. Elife. 2018 Jul 10;7: - PubMed
  43. Nat Methods. 2014 May;11(5):508-20 - PubMed
  44. Adv Enzyme Regul. 1965;3:425-38 - PubMed
  45. Science. 2002 Aug 16;297(5584):1183-6 - PubMed
  46. Open Biol. 2013 Apr 24;3(4):130031 - PubMed
  47. Proc Natl Acad Sci U S A. 2010 Mar 2;107(9):4016-21 - PubMed
  48. Nature. 2008 Nov 27;456(7221):516-9 - PubMed
  49. Biochemistry. 2015 Nov 10;54(44):6684-91 - PubMed
  50. Nature. 2020 Apr;580(7801):119-123 - PubMed
  51. Cell. 2008 Oct 17;135(2):216-26 - PubMed
  52. Rep Prog Phys. 2014;77(2):026601 - PubMed
  53. Phys Biol. 2015 Aug 12;12(5):055002 - PubMed
  54. Curr Biol. 2000 May 4;10(9):R341-3 - PubMed
  55. Proc Natl Acad Sci U S A. 2021 Oct 19;118(42): - PubMed
  56. Cell Cycle. 2005 Mar;4(3):488-93 - PubMed
  57. Nat Commun. 2020 Nov 24;11(1):5961 - PubMed
  58. Biochem Pharmacol. 2017 Nov 15;144:29-34 - PubMed
  59. Phys Rev E. 2020 Nov;102(5-1):052410 - PubMed
  60. Transcription. 2016 Aug 7;7(4):115-20 - PubMed
  61. FEBS Lett. 2003 Apr 24;541(1-3):176-7 - PubMed
  62. Cell Rep. 2018 May 15;23(7):2175-2185.e4 - PubMed
  63. Curr Biol. 2003 Aug 19;13(16):1409-13 - PubMed
  64. PLoS One. 2012;7(7):e41019 - PubMed
  65. Nat Cell Biol. 2003 Apr;5(4):346-51 - PubMed
  66. Mol Syst Biol. 2012 Mar 27;8:576 - PubMed
  67. Biophys J. 2012 Apr 18;102(8):1881-8 - PubMed
  68. Nature. 2017 Jun 15;546(7658):431-435 - PubMed
  69. J Mol Biol. 2008 Dec 31;384(5):1106-19 - PubMed
  70. J Biol Rhythms. 1999 Dec;14(6):469-79 - PubMed
  71. Sci Rep. 2020 Jun 4;10(1):9126 - PubMed
  72. Science. 2005 Sep 23;309(5743):2010-3 - PubMed
  73. Nature. 2009 Jan 15;457(7227):309-12 - PubMed
  74. Phys Rev Lett. 2012 Jan 6;108(1):018102 - PubMed
  75. EMBO J. 1999 Nov 15;18(22):6439-47 - PubMed

Publication Types