Display options
Share it on

Biophys J. 2021 Dec 21;120(24):5530-5543. doi: 10.1016/j.bpj.2021.11.017. Epub 2021 Nov 17.

The impact of the glycan headgroup on the nanoscopic segregation of gangliosides.

Biophysical journal

Maria J Sarmento, Michael C Owen, Joana C Ricardo, Barbora Chmelová, David Davidović, Ilya Mikhalyov, Natalia Gretskaya, Martin Hof, Mariana Amaro, Robert Vácha, Radek Šachl

Affiliations

  1. J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Prague, Czech Republic.
  2. CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic; Institute of Chemistry, Faculty of Materials Science and Engineering, University of Miskolc, 3515 Miskolc, Hungary.
  3. J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Prague, Czech Republic; Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic.
  4. Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Science, Moscow Ul. Miklukho-Maklaya, Moscow 117997, Russia.
  5. CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic.
  6. J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Prague, Czech Republic. Electronic address: [email protected].

PMID: 34798138 PMCID: PMC8715245 DOI: 10.1016/j.bpj.2021.11.017

Abstract

Gangliosides form an important class of receptor lipids containing a large oligosaccharide headgroup whose ability to self-organize within lipid membranes results in the formation of nanoscopic platforms. Despite their biological importance, the molecular basis for the nanoscopic segregation of gangliosides is not clear. In this work, we investigated the role of the ganglioside headgroup on the nanoscale organization of gangliosides. We studied the effect of the reduction in the number of sugar units of the ganglioside oligosaccharide chain on the ability of gangliosides GM

Copyright © 2021 Biophysical Society. Published by Elsevier Inc. All rights reserved.

References

  1. J Biol Chem. 1998 May 1;273(18):11205-11 - PubMed
  2. Biochim Biophys Acta. 2009 Jan;1788(1):64-71 - PubMed
  3. Prog Mol Biol Transl Sci. 2018;156:197-227 - PubMed
  4. Chem Rev. 2018 Dec 12;118(23):11259-11297 - PubMed
  5. Front Cell Dev Biol. 2020 Apr 28;8:284 - PubMed
  6. Biochem Biophys Res Commun. 2008 Mar 14;367(3):616-22 - PubMed
  7. Proc Natl Acad Sci U S A. 2009 Jun 30;106(26):10829-34 - PubMed
  8. Phys Chem Chem Phys. 2009 Jun 7;11(21):4335-43 - PubMed
  9. Chem Rev. 2006 Jun;106(6):2111-25 - PubMed
  10. Mol Neurobiol. 2016 Apr;53(3):1824-1842 - PubMed
  11. Prog Mol Biol Transl Sci. 2018;156:229-239 - PubMed
  12. Prog Mol Biol Transl Sci. 2018;156:325-354 - PubMed
  13. J Lipid Res. 2016 Feb;57(2):299-309 - PubMed
  14. J Biol Chem. 1998 Apr 3;273(14):7967-71 - PubMed
  15. FEBS Lett. 2020 Nov;594(22):3668-3697 - PubMed
  16. Development. 1994 Jun;120(6):1373-84 - PubMed
  17. Biophys J. 2007 Feb 15;92(4):1263-70 - PubMed
  18. Biochemistry. 2007 Feb 20;46(7):1868-77 - PubMed
  19. Nat Rev Mol Cell Biol. 2008 Feb;9(2):125-38 - PubMed
  20. Prog Mol Biol Transl Sci. 2018;156:1-62 - PubMed
  21. Curr Opin Struct Biol. 2009 Oct;19(5):549-57 - PubMed
  22. Chem Phys Lipids. 1990 Feb;52(3-4):231-41 - PubMed
  23. Biochim Biophys Acta. 2014 Aug;1838(8):2105-14 - PubMed
  24. J Virol. 2006 Feb;80(3):1361-6 - PubMed
  25. J Am Chem Soc. 2014 Sep 10;136(36):12631-7 - PubMed
  26. Int J Mol Sci. 2012 Nov 30;13(12):16141-56 - PubMed
  27. J Chromatogr. 1993 Sep 3;646(2):327-33 - PubMed
  28. J Biol Chem. 2007 Jul 20;282(29):21081-9 - PubMed
  29. Mol Psychiatry. 2004 Oct;9(10):946-52 - PubMed
  30. Biophys J. 2015 Dec 1;109(11):2317-27 - PubMed
  31. J Lipid Res. 2008 Jun;49(6):1157-75 - PubMed
  32. Chem Phys Lipids. 1994 May 6;71(1):21-45 - PubMed
  33. Am J Pathol. 2009 May;174(5):1891-909 - PubMed
  34. Nat Commun. 2013;4:2058 - PubMed
  35. Glycobiology. 2007 Jun;17(6):663-76 - PubMed
  36. EMBO J. 2003 Sep 1;22(17):4346-55 - PubMed
  37. J Virol. 2007 Dec;81(23):12846-58 - PubMed
  38. Prog Mol Biol Transl Sci. 2018;156:435-454 - PubMed
  39. Biochim Biophys Acta. 2015 Apr;1853(4):850-7 - PubMed
  40. Proc Natl Acad Sci U S A. 1981 Sep;78(9):5406-10 - PubMed
  41. Chem Phys Lipids. 1995 May 22;76(1):103-8 - PubMed
  42. J Am Chem Soc. 2007 May 9;129(18):5954-61 - PubMed
  43. J Phys Chem B. 2012 Mar 15;116(10):3164-79 - PubMed
  44. Cells. 2013 Dec 06;2(4):751-67 - PubMed
  45. Biochemistry. 1988 Aug 23;27(17):6197-202 - PubMed
  46. Sci Rep. 2017 Jul 14;7(1):5460 - PubMed
  47. Dev Comp Immunol. 2018 Sep;86:219-231 - PubMed
  48. Glycobiology. 2003 Oct;13(10):713-23 - PubMed
  49. J Biol Chem. 2010 Aug 27;285(35):27213-27223 - PubMed
  50. Ann N Y Acad Sci. 2012 Apr;1253:206-21 - PubMed
  51. Prog Mol Biol Transl Sci. 2018;156:413-434 - PubMed
  52. Prog Mol Biol Transl Sci. 2018;156:289-324 - PubMed
  53. Vaccine. 1985 Sep;3(3 Suppl):201-3 - PubMed
  54. Nat Med. 2011 Jan;17(1):105-9 - PubMed
  55. J Biol Chem. 2005 Feb 11;280(6):4730-7 - PubMed
  56. Prog Mol Biol Transl Sci. 2018;156:355-382 - PubMed
  57. J Virol. 2016 Mar 28;90(8):4067-4077 - PubMed
  58. Biophys J. 2011 Dec 7;101(11):L60-2 - PubMed
  59. Infect Immun. 1988 Jul;56(7):1748-53 - PubMed
  60. J Phys Chem Lett. 2019 May 2;10(9):2024-2030 - PubMed
  61. Mol Simul. 2008;34(4):349-363 - PubMed
  62. Histol Histopathol. 1997 Oct;12(4):945-60 - PubMed
  63. Biophys J. 2019 Oct 1;117(7):1215-1223 - PubMed
  64. J Biol Chem. 2002 Feb 1;277(5):3085-92 - PubMed
  65. Adv Exp Med Biol. 2001;491:369-402 - PubMed

Publication Types