Display options
Share it on

Glob Chang Biol. 2022 Jan 05; doi: 10.1111/gcb.16062. Epub 2022 Jan 05.

Priming effects in soils across Europe.

Global change biology

José A Siles, Marta Díaz-López, Alfonso Vera, Nico Eisenhauer, Carlos A Guerra, Linnea C Smith, François Buscot, Thomas Reitz, Claudia Breitkreuz, Johan van den Hoogen, Thomas W Crowther, Alberto Orgiazzi, Yakov Kuzyakov, Manuel Delgado-Baquerizo, Felipe Bastida

Affiliations

  1. Department of Soil and Water Conservation and Waste Management, CEBAS-CSIC, Murcia, Spain.
  2. German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.
  3. Institute of Biology, Leipzig University, Leipzig, Germany.
  4. Institute of Biology, Martin Luther University Halle Wittenberg, Halle (Saale), Germany.
  5. Soil Ecology Department, UFZ-Helmholtz Centre for Environmental Research, Halle (Saale), Germany.
  6. Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zürich, Zurich, Switzerland.
  7. European Commission, Joint Research Centre, Ispra, Italy.
  8. Department of Soil Science of Temperate Ecosystems and Department of Agricultural Soil Science, University of Gottingen, Gottingen, Germany.
  9. Agro-Technological Institute, RUDN University, Moscow, Russia.
  10. Institute of Environmental Sciences, Kazan Federal University, Kazan, Russia.
  11. Departamento de Sistemas Físicos, Químicos y Naturales, Universidad Pablo de Olavide, Sevilla, Spain.

PMID: 34984772 DOI: 10.1111/gcb.16062

Abstract

Land use is a key factor driving changes in soil carbon (C) cycle and contents worldwide. The priming effect (PE)-CO

© 2022 John Wiley & Sons Ltd.

Keywords: agroecosystems; carbon cycling; land management; land use; priming effect; soil organic matter

References

  1. Anderson, J. P. E., & Domsch, K. H. (1978). A physiological method for the quantitative measurement of microbial biomass in soils. Soil Biology and Biochemistry, 10, 215-221. https://doi.org/10.1016/0038-0717(78)90099-8 - PubMed
  2. Archer, E. (2020). rfPermute: Estimate permutation p-values for random forest importance metrics. https://CRAN.R-project.org/package=rfPermute - PubMed
  3. Bastida, F., García, C., Fierer, N., Eldridge, D. J., Bowker, M. A., Abades, S., Alfaro, F. D., Asefaw Berhe, A., Cutler, N. A., Gallardo, A., García-Velázquez, L., Hart, S. C., Hayes, P. E., Hernández, T., Hseu, Z.-Y., Jehmlich, N., Kirchmair, M., Lambers, H., Neuhauser, S., … Delgado-Baquerizo, M. (2019). Global ecological predictors of the soil priming effect. Nature Communications, 10, 3481. https://doi.org/10.1038/s41467-019-11472-7 - PubMed
  4. Bastida, F., Torres, I. F., Hernández, T., & García, C. (2017). The impacts of organic amendments: Do they confer stability against drought on the soil microbial community? Soil Biology and Biochemistry, 113, 173-183. https://doi.org/10.1016/j.soilbio.2017.06.012 - PubMed
  5. Blagodatskaya, E. V., Blagodatsky, S. A., Anderson, T. H., & Kuzyakov, Y. (2007). Priming effects in Chernozem induced by glucose and N in relation to microbial growth strategies. Applied Soil Ecology, 37, 95-105. https://doi.org/10.1016/j.apsoil.2007.05.002 - PubMed
  6. Blagodatskaya, E., Khomyakov, N., Myachina, O., Bogomolova, I., Blagodatsky, S., & Kuzyakov, Y. (2014). Microbial interactions affect sources of priming induced by cellulose. Soil Biology and Biochemistry, 74, 39-49. https://doi.org/10.1016/j.soilbio.2014.02.017 - PubMed
  7. Blagodatskaya, E., & Kuzyakov, Y. (2008). Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: critical review. Biology and Fertility of Soils, 45, 115-131. https://doi.org/10.1007/s00374-008-0334-y - PubMed
  8. Bouchoms, S., Wang, Z., Vanacker, V., Doetterl, S., & Van Oost, K. (2017). Modelling long-term soil organic carbon dynamics under the impact of land cover change and soil redistribution. Catena, 151, 63-73. https://doi.org/10.1016/j.catena.2016.12.008 - PubMed
  9. Brant, J. B., Sulzman, E. W., & Myrold, D. D. (2006). Microbial community utilization of added carbon substrates in response to long-term carbon input manipulation. Soil Biology and Biochemistry, 38, 2219-2232. https://doi.org/10.1016/j.soilbio.2006.01.022 - PubMed
  10. Breiman, L. (2001). Random forests. Machine Learning, 45, 5-32. https://doi.org/10.1023/A:1010933404324 - PubMed
  11. Breitkreuz, C., Herzig, L., Buscot, F., Reitz, T., & Tarkka, M. (2021). Interactions between soil properties, agricultural management and cultivar type drive structural and functional adaptations of the wheat rhizosphere microbiome to drought. Environmental Microbiology, 23, 5866-5882. https://doi.org/10.1111/1462-2920.15607 - PubMed
  12. Chen, L., Liu, L., Qin, S., Yang, G., Fang, K., Zhu, B., Kuzyakov, Y., Chen, P., Xu, Y., & Yang, Y. (2019). Regulation of priming effect by soil organic matter stability over a broad geographic scale. Nature Communications, 10, 5112. https://doi.org/10.1038/s41467-019-13119-z - PubMed
  13. Chen, R., Senbayram, M., Blagodatsky, S., Myachina, O., Dittert, K., Lin, X., Blagodatskaya, E., & Kuzyakov, Y. (2014). Soil C and N availability determine the priming effect: Microbial N mining and stoichiometric decomposition theories. Global Change Biology, 20, 2356-2367. https://doi.org/10.1111/gcb.12475 - PubMed
  14. Cheng, W., Parton, W. J., Gonzalez-Meler, M. A., Phillips, R., Asao, S., McNickle, G. G., Brzostek, E., & Jastrow, J. D. (2014). Synthesis and modeling perspectives of rhizosphere priming. New Phytologist, 201, 31-44. https://doi.org/10.1111/nph.12440 - PubMed
  15. de Graaff, M.-A., Jastrow, J. D., Gillette, S., Johns, A., & Wullschleger, S. D. (2014). Differential priming of soil carbon driven by soil depth and root impacts on carbon availability. Soil Biology and Biochemistry, 69, 147-156. https://doi.org/10.1016/j.soilbio.2013.10.047 - PubMed
  16. Delgado-Baquerizo, M., Maestre, F. T., Reich, P. B., Jeffries, T. C., Gaitan, J. J., Encinar, D., Berdugo, M., Campbell, C. D., & Singh, B. K. (2016). Microbial diversity drives multifunctionality in terrestrial ecosystems. Nature Communications, 7, 10541. https://doi.org/10.1038/ncomms10541 - PubMed
  17. Delgado-Baquerizo, M., Reich, P. B., Khachane, A. N., Campbell, C. D., Thomas, N., Freitag, T. E., Abu Al-Soud, W., Sørensen, S., Bardgett, R. D., & Singh, B. K. (2017). It is elemental: Soil nutrient stoichiometry drives bacterial diversity. Environmental Microbiology, 19, 1176-1188. https://doi.org/10.1111/1462-2920.13642 - PubMed
  18. Dungait, J. A. J., Kemmitt, S. J., Michallon, L., Guo, S., Wen, Q., Brookes, P. C., & Evershed, R. P. (2011). Variable responses of the soil microbial biomass to trace concentrations of 13C-labelled glucose, using 13C-PLFA analysis. European Journal of Soil Science, 62, 117-126. https://doi.org/10.1111/j.1365-2389.2010.01321.x - PubMed
  19. European-Commission. (2018). Proposal for a regulation of the European Parliament and of the council establishing rules on support for strategic plans to be drawn up by Member States under the Common agricultural policy (CAP Strategic Plans) and financed by the European Agricultural Guarantee Fund (EAGF) and by the European Agricultural Fund for Rural Development (EAFRD). COM/2018/392 final-2018/0216 (COD). https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM%3A2018%3A392%3AFIN - PubMed
  20. Feng, J., & Zhu, B. (2021). Global patterns and associated drivers of priming effect in response to nutrient addition. Soil Biology and Biochemistry, 153, 108118. https://doi.org/10.1016/j.soilbio.2020.108118 - PubMed
  21. Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37, 4302-4315. https://doi.org/10.1002/joc.5086 - PubMed
  22. Finn, D., Kopittke, P. M., Dennis, P. G., & Dalal, R. C. (2017). Microbial energy and matter transformation in agricultural soils. Soil Biology and Biochemistry, 111, 176-192. https://doi.org/10.1016/j.soilbio.2017.04.010 - PubMed
  23. Fontaine, S., Mariotti, A., & Abbadie, L. (2003). The priming effect of organic matter: A question of microbial competition? Soil Biology and Biochemistry, 35, 837-843. https://doi.org/10.1016/S0038-0717(03)00123-8 - PubMed
  24. Frostegård, A., Tunlid, A., & Baath, E. (1993). Shifts in the structure of soil microbial communities in limed forests as revealed by phospholipid fatty acid analysis. Soil Biology and Biochemistry, 26, 723-730. https://doi.org/10.1016/0038-0717(93)90113-P - PubMed
  25. Guenet, B., Camino-Serrano, M., Ciais, P., Tifafi, M., Maignan, F., Soong, J. L., & Janssens, I. A. (2018). Impact of priming on global soil carbon stocks. Global Change Biology, 24, 1873-1883. https://doi.org/10.1111/gcb.14069 - PubMed
  26. Guenet, B., Leloup, J., Raynaud, X., Bardoux, G., & Abbadie, L. (2010). Negative priming effect on mineralization in a soil free of vegetation for 80 years. European Journal of Soil Science, 61, 384-391. https://doi.org/10.1111/j.1365-2389.2010.01234.x - PubMed
  27. Guo, L. B., & Gifford, R. M. (2002). Soil carbon stocks and land use change: A meta analysis. Global Change Biology, 8, 345-360. https://doi.org/10.1046/j.1354-1013.2002.00486.x - PubMed
  28. Guttières, R., Nunan, N., Raynaud, X., Lacroix, G., Barot, S., Barré, P., Girardin, C., Guenet, B., Lata, J.-C., & Abbadie, L. (2021). Temperature and soil management effects on carbon fluxes and priming effect intensity. Soil Biology and Biochemistry, 153, 108103. https://doi.org/10.1016/j.soilbio.2020.108103 - PubMed
  29. Kuzyakov, Y., & Bol, R. (2006). Sources and mechanisms of priming effect induced in two grassland soils amended with slurry and sugar. Soil Biology and Biochemistry, 38, 747-758. https://doi.org/10.1016/j.soilbio.2005.06.025 - PubMed
  30. Kuzyakov, Y., Friedel, J. K., & Stahr, K. (2000). Review of mechanisms and quantification of priming effects. Soil Biology and Biochemistry, 32, 1485-1498. https://doi.org/10.1016/S0038-0717(00)00084-5 - PubMed
  31. Kuzyakov, Y., & Zamanian, K. (2019). Reviews and syntheses: Agropedogenesis-humankind as the sixth soil-forming factor and attractors of agricultural soil degradation. Biogeosciences, 16, 4783-4803. https://doi.org/10.5194/bg-16-4783-2019 - PubMed
  32. Li, B.-B., Li, P.-P., Yang, X.-M., Xiao, H.-B., Xu, M.-X., & Liu, G.-B. (2021). Land-use conversion changes deep soil organic carbon stock in the Chinese Loess Plateau. Land Degradation & Development, 32, 505-517. https://doi.org/10.1002/ldr.3644 - PubMed
  33. Li, Q., Tian, Y., Zhang, X., Xu, X., Wang, H., & Kuzyakov, Y. (2017). Labile carbon and nitrogen additions affect soil organic matter decomposition more strongly than temperature. Applied Soil Ecology, 114, 152-160. https://doi.org/10.1016/j.apsoil.2017.01.009 - PubMed
  34. Liu, X.-J.-A., Finley, B. K., Mau, R. L., Schwartz, E., Dijkstra, P., Bowker, M. A., & Hungate, B. A. (2020). The soil priming effect: Consistent across ecosystems, elusive mechanisms. Soil Biology and Biochemistry, 140, 107617. https://doi.org/10.1016/j.soilbio.2019.107617 - PubMed
  35. Liu, X.-J.-A., Sun, J., Mau, R. L., Finley, B. K., Compson, Z. G., van Gestel, N., Brown, J. R., Schwartz, E., Dijkstra, P., & Hungate, B. A. (2017). Labile carbon input determines the direction and magnitude of the priming effect. Applied Soil Ecology, 109, 7-13. https://doi.org/10.1016/j.apsoil.2016.10.002 - PubMed
  36. Luo, Z., Wang, E., & Sun, O. J. (2016). A meta-analysis of the temporal dynamics of priming soil carbon decomposition by fresh carbon inputs across ecosystems. Soil Biology and Biochemistry, 101, 96-103. https://doi.org/10.1016/j.soilbio.2016.07.011 - PubMed
  37. Malik, A. A., Puissant, J., Buckeridge, K. M., Goodall, T., Jehmlich, N., Chowdhury, S., Gweon, H. S., Peyton, J. M., Mason, K. E., van Agtmaal, M., Blaud, A., Clark, I. M., Whitaker, J., Pywell, R. F., Ostle, N., Gleixner, G., & Griffiths, R. I. (2018). Land use driven change in soil pH affects microbial carbon cycling processes. Nature Communications, 9, 3591. https://doi.org/10.1038/s41467-018-05980-1 - PubMed
  38. Moreno, J. L., Torres, I. F., García, C., López-Mondéjar, R., & Bastida, F. (2019). Land use shapes the resistance of the soil microbial community and the C cycling response to drought in a semi-arid area. Science of the Total Environment, 648, 1018-1030. https://doi.org/10.1016/j.scitotenv.2018.08.214 - PubMed
  39. Mueller, C. W., & Koegel-Knabner, I. (2009). Soil organic carbon stocks, distribution, and composition affected by historic land use changes on adjacent sites. Biology and Fertility of Soils, 45, 347-359. https://doi.org/10.1007/s00374-008-0336-9 - PubMed
  40. Oksanen, J., Kindt, R., Legendre, P., O'Hara, B., Simpson, J. L., Solymos, P., Henry, M., Stevens, H., & Wagner, H. (2013). Vegan: Community ecology package in R. Version 2.0-10. - PubMed
  41. Orgiazzi, A., Ballabio, C., Panagos, P., Jones, A., & Fernández-Ugalde, O. (2018). LUCAS Soil, the largest expandable soil dataset for Europe: A review. European Journal of Soil Science, 69, 140-153. https://doi.org/10.1111/ejss.12499 - PubMed
  42. Panettieri, M., Guigue, J., Chemidlin Prevost-Bouré, N., Thévenot, M., Lévêque, J., Le Guillou, C., Maron, P. A., Santoni, A. L., Ranjard, L., Mounier, S., Menasseri, S., Viaud, V., & Mathieu, O. (2020). Grassland-cropland rotation cycles in crop-livestock farming systems regulate priming effect potential in soils through modulation of microbial communities, composition of soil organic matter and abiotic soil properties. Agriculture, Ecosystems and Environment, 299, 106973. https://doi.org/10.1016/j.agee.2020.106973 - PubMed
  43. Pascault, N., Ranjard, L., Kaisermann, A., Bachar, D., Christen, R., Terrat, S., Mathieu, O., Lévêque, J., Mougel, C., Henault, C., Lemanceau, P., Péan, M., Boiry, S., Fontaine, S., & Maron, P.-A. (2013). Stimulation of different functional groups of bacteria by various plant residues as a driver of soil priming effect. Ecosystems, 16, 810-822. https://doi.org/10.1007/s10021-013-9650-7 - PubMed
  44. Paterson, E., & Sim, A. (2013). Soil-specific response functions of organic matter mineralization to the availability of labile carbon. Global Change Biology, 19, 1562-1571. https://doi.org/10.1111/gcb.12140 - PubMed
  45. Pe'er, G., Zinngrebe, Y., Moreira, F., Sirami, C., Schindler, S., Müller, R., Bontzorlos, V., Clough, D., Bezák, P., Bonn, A., Hansjürgens, B., Lomba, Â., Möckel, S., Passoni, G., Schleyer, C., Schmidt, J., & Lakner, S. (2019). A greener path for the EU Common Agricultural Policy. Science, 365, 449-451. https://doi.org/10.1126/science.aax3146 - PubMed
  46. Perveen, N., Barot, S., Maire, V., Cotrufo, M. F., Shahzad, T., Blagodatskaya, E., Stewart, C. E., Ding, W., Siddiq, M. R., Dimassi, B., Mary, B., & Fontaine, S. (2019). Universality of priming effect: An analysis using thirty five soils with contrasted properties sampled from five continents. Soil Biology and Biochemistry, 134, 162-171. https://doi.org/10.1016/j.soilbio.2019.03.027 - PubMed
  47. Qiao, N., Schaefer, D., Blagodatskaya, E., Zou, X., Xu, X., & Kuzyakov, Y. (2014). Labile carbon retention compensates for CO2 released by priming in forest soils. Global Change Biology, 20, 1943-1954. https://doi.org/10.1111/gcb.12458 - PubMed
  48. Razanamalala, K., Razafimbelo, T., Maron, P. A., Ranjard, L., Chemidlin, N., Lelièvre, M., Dequiedt, S., Ramaroson, V. H., Marsden, C., Becquer, T., Trap, J., Blanchart, E., & Bernard, L. (2018). Soil microbial diversity drives the priming effect along climate gradients: A case study in Madagascar. ISME Journal, 12, 451-462. https://doi.org/10.1038/ismej.2017.178 - PubMed
  49. Rinnan, R., & Bååth, E. (2009). Differential utilization of carbon substrates by bacteria and fungi in tundra soil. Applied and Environmental Microbiology, 75, 3611-3620. https://doi.org/10.1128/AEM.02865-08 - PubMed
  50. Rodrigues, J. L. M., Pellizari, V. H., Mueller, R., Baek, K., Jesus, E. D. C., Paula, F. S., Mirza, B., Hamaoui, G. S., Tsai, S. M., Feigl, B., Tiedje, J. M., Bohannan, B. J. M., & Nusslein, K. (2013). Conversion of the Amazon rainforest to agriculture results in biotic homogenization of soil bacterial communities. Proceedings of the National Academy of Sciences of the United States of America, 110, 988-993. https://doi.org/10.1073/pnas.1220608110 - PubMed
  51. Running, S., & Zhao, M. (2019). MOD17A3HGF MODIS/Terra Net Primary Production Gap-Filled Yearly L4 Global 500m SIN Grid V006. NASA EOSDIS Land Processes DAAC. - PubMed
  52. Schermelleh-Engel, K., Moosbrugger, H., & Müller, H. (2003). Evaluating the fit of structural equation models: Tests of significance and descriptive goodness-of-fit measures. Methods of Psychological Research Online, 8, 23-74. - PubMed
  53. Scheu, S. (1992). Automated measurement of the respiratory response of soil microcompartments: Active microbial biomass in earthworm faeces. Soil Biology and Biochemistry, 24, 1113-1118. https://doi.org/10.1016/0038-0717(92)90061-2 - PubMed
  54. Schutter, M. E., & Dick, R. P. (2000). Comparison of fatty acid methyl ester (fame) methods for characterizing microbial communities. Soil Science Society of America Journal, 64, 1659-1668. https://doi.org/10.2136/sssaj2000.6451659x - PubMed
  55. Shahbaz, M., Kuzyakov, Y., & Heitkamp, F. (2017). Decrease of soil organic matter stabilization with increasing inputs: Mechanisms and controls. Geoderma, 304, 76-82. https://doi.org/10.1016/j.geoderma.2016.05.019 - PubMed
  56. Szoboszlay, M., Dohrmann, A. B., Poeplau, C., Don, A., & Tebbe, C. C. (2017). Impact of land-use change and soil organic carbon quality on microbial diversity in soils across Europe. FEMS Microbiology Ecology, 93, fix146. https://doi.org/10.1093/femsec/fix146 - PubMed
  57. Thangarajan, R., Bolan, N. S., Tian, G., Naidu, R., & Kunhikrishnan, A. (2013). Role of organic amendment application on greenhouse gas emission from soil. Science of the Total Environment, 465, 72-96. https://doi.org/10.1016/j.scitotenv.2013.01.031 - PubMed
  58. Tian, H., Lu, C., Yang, J., Banger, K., Huntzinger, D. N., Schwalm, C. R., Michalak, A. M., Cook, R., Ciais, P., Hayes, D., Huang, M., Ito, A., Jain, A. K., Lei, H., Mao, J., Pan, S., Post, W. M., Peng, S., Poulter, B., … Zeng, N. (2015). Global patterns and controls of soil organic carbon dynamics as simulated by multiple terrestrial biosphere models: Current status and future directions. Global Biogeochemical Cycles, 29, 775-792. https://doi.org/10.1002/2014GB005021 - PubMed
  59. Trabucco, A., & Zomer, R. J. (2018). Global aridity index and potential evapotranspiration (ET0) climate database v2. CGIAR Consortium for Spatial Information, 10. https://doi.org/10.6084/m9.figshare.7504448.v1 - PubMed
  60. Vera, A., Moreno, J. L., Siles, J. A., López-Mondejar, R., Zhou, Y., Li, Y., García, C., Nicolás, E., & Bastida, F. (2021). Interactive impacts of boron and organic amendments in plant-soil microbial relationships. Journal of Hazardous Materials, 408, 124939. https://doi.org/10.1016/j.jhazmat.2020.124939 - PubMed
  61. Vestergård, M., Reinsch, S., Bengston, P., Ambus, P., & Christensen, S. (2016). Enhanced priming of old, not new soil carbon at elevated atmospheric CO2. Soil Biology and Biochemistry, 100, 140-148. https://doi.org/10.1016/j.soilbio.2016.06.010 - PubMed
  62. Wei, X., Shao, M., Gale, W., & Li, L. (2014). Global pattern of soil carbon losses due to the conversion of forests to agricultural land. Scientific Reports, 4, 4062. https://doi.org/10.1038/srep04062 - PubMed
  63. Wickham, H. (2016). ggplot2: Elegant graphics for data analysis. Springer-Verlag. - PubMed
  64. Yanni, S. F., Diochon, A., Helgason, B. L., Ellert, B. H., & Gregorich, E. G. (2017). Temperature response of plant residue and soil organic matter decomposition in soil from different depths. European Journal of Soil Science, 69, 325-335. https://doi.org/10.1111/ejss.12508 - PubMed
  65. Young, I. M., & Ritz, K. (2000). Tillage, habitat space and function of soil microbes. Soil and Tillage Research, 53, 201-213. https://doi.org/10.1016/S0167-1987(99)00106-3 - PubMed
  66. Zamanian, K., Zarebanadkouki, M., & Kuzyakov, Y. (2018). Nitrogen fertilization raises CO2 efflux from inorganic carbon: A global assessment. Global Change Biology, 24, 2810-2817. https://doi.org/10.1111/gcb.14148 - PubMed
  67. Zhang, W., Wang, X., & Wang, S. (2013). Addition of external organic carbon and native soil organic carbon decomposition: A meta-analysis. PLoS One, 8, e54779. https://doi.org/10.1371/journal.pone.0054779 - PubMed
  68. Zhou, J., Wen, Y., Shi, L., Marshall, M. R., Kuzyakov, Y., Blagodatskaya, E., & Zang, H. (2021). Strong priming of soil organic matter induced by frequent input of labile carbon. Soil Biology and Biochemistry, 152, 108069. https://doi.org/10.1016/j.soilbio.2020.108069 - PubMed

Publication Types

Grant support