Display options
Share it on

Pediatr Res. 2022 Jan 03; doi: 10.1038/s41390-021-01884-x. Epub 2022 Jan 03.

Probiotic supplementation in neonates with congenital gastrointestinal surgical conditions: a pilot randomised controlled trial.

Pediatric research

Shripada Rao, Meera Esvaran, Liwei Chen, Anthony D Keil, Ian Gollow, Karen Simmer, Bernd Wemheuer, Patricia Conway, Sanjay Patole

Affiliations

  1. Neonatal Intensive Care Unit, Perth Children's Hospital, Perth, WA, Australia. [email protected].
  2. Neonatal Intensive Care Unit, King Edward Memorial Hospital for Women, Perth, WA, Australia. [email protected].
  3. School of Medicine, University of Western Australia, Crawley, WA, Australia. [email protected].
  4. Centre for Marine Science and Innovation at the University of New South Wales (UNSW), Sydney, NSW, Australia.
  5. School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore.
  6. Department of Microbiology, PathWest Laboratory Medicine, Perth, WA, Australia.
  7. Department of Paediatric Surgery, Perth Children's Hospital, Perth, WA, Australia.
  8. Neonatal Intensive Care Unit, Perth Children's Hospital, Perth, WA, Australia.
  9. Neonatal Intensive Care Unit, King Edward Memorial Hospital for Women, Perth, WA, Australia.
  10. School of Medicine, University of Western Australia, Crawley, WA, Australia.
  11. Department of Genomic and Applied Microbiology, University of Göttingen, Göttingen, Germany.

PMID: 34980887 DOI: 10.1038/s41390-021-01884-x

Abstract

OBJECTIVE: To evaluate whether probiotic supplementation attenuates gut-dysbiosis in neonates with congenital gastrointestinal surgical conditions (CGISC).

METHODS: Sixty-one neonates (≥35 weeks gestation) with CGISC were randomised to receive daily supplementation with a triple-strain bifidobacterial probiotic (n = 30) or placebo (n = 31) until discharge. Stool microbiota was analysed using 16S ribosomal RNA gene sequencing on samples collected before (T1), 1 week (T2), and 2 weeks (T3) after supplementation and before discharge (T4). The primary outcome was the sum of the relative abundance of potentially pathogenic families of Clostridiaceae, Enterobacteriaceae, Enterococcaceae, Pseudomonaceae, Staphylococcaeae, Streptococcaceae, and Yersiniaceae at T3.

RESULTS: The median gestational age [38 weeks (IQR: 37.1-38.9)] was similar in both groups. The probiotic group had lower rates of caesarean deliveries (40% versus 70%, p = 0.02). The relative abundance of potentially pathogenic families was lower in the probiotic group compared to placebo at T3 [(median: 50.4 (IQR: 26.6-67.6) versus 67.1 (IQR: 50.9-96.2); p = 0.04). Relative abundance of Bifidobacteriaceae was higher in the probiotic group at T3 [(median: 39.8 (IQR: 24.9-52.1) versus 0.03 (IQR 0.02-2.1); p < 0.001). Stratified analysis continued to show a higher abundance of Bifidobacteriaceae in the probiotic group, irrespective of the mode of delivery.

CONCLUSIONS: Probiotic supplementation attenuated gut dysbiosis in neonates with CGISC.

TRIAL REGISTRATION: http://www.anzctr.org.au (ACTRN12617001401347).

IMPACT: Probiotic supplementation attenuates gut dysbiosis and improves stool short-chain fatty acid levels in neonates with congenital gastrointestinal surgical conditions. This is the second pilot RCT of probiotic supplementation in neonates with congenital gastrointestinal conditions. These findings will pave the way for conducting multicentre RCTs in this area.

© 2021. Crown.

References

  1. Auber, F. et al. Enteric nervous system impairment in gastroschisis. Eur. J. Pediatr. Surg. 23, 29–38 (2013). - PubMed
  2. Bairdain, S. et al. A modern cohort of duodenal obstruction patients: predictors of delayed transition to full enteral nutrition. J. Nutr. Metab. 2014, 850820 (2014). - PubMed
  3. Smith, N. Oesophageal atresia and tracheo-oesophageal fistula. Early Hum. Dev. 90, 947–950 (2014). - PubMed
  4. Chung, E. Y. & Yardley, J. Are there risks associated with empiric acid suppression treatment of infants and children suspected of having gastroesophageal reflux disease. Hosp. Pediatr. 3, 16–23 (2013). - PubMed
  5. Schwartz, M. Z. Novel therapies for the management of short bowel syndrome in children. Pediatr. Surg. Int. 29, 967–974 (2013). - PubMed
  6. Bower, T. R., Pringle, K. C. & Soper, R. T. Sodium deficit causing decreased weight gain and metabolic acidosis in infants with ileostomy. J. Pediatr. Surg. 23, 567–572 (1988). - PubMed
  7. Mansour, F., Petersen, D., De Coppi, P. & Eaton, S. Effect of sodium deficiency on growth of surgical infants: a retrospective observational study. Pediatr. Surg. Int. 30, 1279–1284 (2014). - PubMed
  8. Ng, D. H., Pither, C. A., Wootton, S. A. & Stroud, M. A. The ‘not so short-bowel syndrome’: potential health problems in patients with an ileostomy. Colorectal Dis. 15, 1154–1161 (2013). - PubMed
  9. Demehri, F. R., Halaweish, I. F., Coran, A. G. & Teitelbaum, D. H. Hirschsprung-associated enterocolitis: pathogenesis, treatment and prevention. Pediatr. Surg. Int. 29, 873–881 (2013). - PubMed
  10. Macfarlane, S. Antibiotic treatments and microbes in the gut. Environ. Microbiol. 16, 919–924 (2014). - PubMed
  11. Hallab, J. C. et al. Molecular characterization of bacterial colonization in the preterm and term infant’s intestine. Indian J. Pediatr. 80, 1–5 (2013). - PubMed
  12. Fouhy, F. et al. High-throughput sequencing reveals the incomplete, short-term recovery of infant gut microbiota following parenteral antibiotic treatment with ampicillin and gentamicin. Antimicrob. Agents Chemother. 56, 5811–5820 (2012). - PubMed
  13. Rao, S. C. et al. Gut microbiota in neonates with congenital gastrointestinal surgical conditions: a prospective study. Pediatr. Res. 88, 878–886 (2020). - PubMed
  14. Ma, J. et al. Comparison of gut microbiota in exclusively breast-fed and formula-fed babies: a study of 91 term infants. Sci. Rep. 10, 15792 (2020). - PubMed
  15. Dahlgren, A. F. et al. Longitudinal changes in the gut microbiome of infants on total parenteral nutrition. Pediatr. Res. 86, 107–114 (2019). - PubMed
  16. Rao, S. C. & Patole, S. K. Probiotic research in neonates with congenital gastrointestinal surgical conditions—now is the time. Microb. Biotechnol. 12, 254–258 (2019). - PubMed
  17. Tan, J. et al. The role of short-chain fatty acids in health and disease. Adv. Immunol. 121, 91–119 (2014). - PubMed
  18. Nogal, A., Valdes, A. M. & Menni, C. The role of short-chain fatty acids in the interplay between gut microbiota and diet in cardio-metabolic health. Gut Microbes 13, 1–24 (2021). - PubMed
  19. Tsukuda, N. et al. Key bacterial taxa and metabolic pathways affecting gut short-chain fatty acid profiles in early life. ISME J. 15, 2574–2590 (2021). - PubMed
  20. Kok, C. R. et al. Stool microbiome, pH and short/branched chain fatty acids in infants receiving extensively hydrolyzed formula, amino acid formula, or human milk through two months of age. BMC Microbiol 20, 337 (2020). - PubMed
  21. Chowdhury, A. H. et al. Perioperative probiotics or synbiotics in adults undergoing elective abdominal surgery: a systematic review and meta-analysis of randomized controlled trials. Ann. Surg. 271, 1036–1047 (2020). - PubMed
  22. Powell, W. T. et al. Probiotic administration in infants with gastroschisis: a pilot randomized placebo-controlled trial. J. Pediatr. Gastroenterol. Nutr. 62, 852–857 (2016). - PubMed
  23. Rao, S., Simmer, K. & Patole, S. Probiotic supplementation in neonates with major gastrointestinal surgical conditions: a systematic review. J. Matern. Fetal Neonatal Med. 31, 1517–1523 (2018). - PubMed
  24. Fenton, T. R. & Kim, J. H. A systematic review and meta-analysis to revise the fenton growth chart for preterm infants. BMC Pediatr. 13, 59 (2013). - PubMed
  25. de Onis, M., Garza, C., Onyango, A. W. & Rolland-Cachera, M. F. [Who growth standards for infants and young children]. Arch. Pediatr. 16, 47–53 (2009). - PubMed
  26. Chou, J. H., Roumiantsev, S. & Singh, R. Peditools electronic growth chart calculators: applications in clinical care, research, and quality improvement. J. Med. Internet Res. 22, e16204 (2020). - PubMed
  27. Mandal, S. et al. Analysis of composition of microbiomes: a novel method for studying microbial composition. Microb. Ecol. Health Dis. 26, 27663 (2015). - PubMed
  28. Moher, D. et al. Consort 2010 explanation and elaboration: updated guidelines for reporting parallel group randomised trials. J. Clin. Epidemiol. 63, e1–e37 (2010). - PubMed
  29. Strobel, K. M. et al. Growth failure prevalence in neonates with gastroschisis: a statewide cohort study. J. Pediatr. 233, 112–118 e113 (2021). - PubMed
  30. Batta, V. et al. Early neurodevelopmental outcomes of congenital gastrointestinal surgical conditions: a single-centre retrospective study. BMJ Paediatr. Open 4, e000736 (2020). - PubMed
  31. Meyers, J. M. et al. Neurodevelopmental outcomes in postnatal growth-restricted preterm infants with postnatal head-sparing. J. Perinatol. 36, 1116–1121 (2016). - PubMed
  32. Neubauer, V., Griesmaier, E., Pehbock-Walser, N., Pupp-Peglow, U. & Kiechl-Kohlendorfer, U. Poor postnatal head growth in very preterm infants is associated with impaired neurodevelopment outcome. Acta Paediatr. 102, 883–888 (2013). - PubMed
  33. Lee, E. S. et al. Factors associated with neurodevelopment in preterm infants with systematic inflammation. BMC Pediatr. 21, 114 (2021). - PubMed
  34. Wejryd, E., Marchini, G., Frimmel, V., Jonsson, B. & Abrahamsson, T. Probiotics promoted head growth in extremely low birthweight infants in a double-blind placebo-controlled trial. Acta Paediatr. 108, 62–69 (2019). - PubMed
  35. Guney Varal, I., Koksal, N., Ozkan, H., Bagci, O. & Dogan, P. Potential use of multi-strain synbiotics for improving postnatal head circumference. Pak. J. Med. Sci. 34, 1502–1506 (2018). - PubMed
  36. Alcon-Giner, C. et al. Microbiota supplementation with bifidobacterium and Lactobacillus modifies the preterm infant gut microbiota and metabolome: an observational study. Cell Rep. Med. 1, 100077 (2020). - PubMed
  37. De Vuyst, L. & Leroy, F. Cross-feeding between bifidobacteria and butyrate-producing colon bacteria explains bifdobacterial competitiveness, butyrate production, and gas production. Int. J. food Microbiol. 149, 73–80 (2011). - PubMed
  38. Shin, N. R., Whon, T. W. & Bae, J. W. Proteobacteria: microbial signature of dysbiosis in gut microbiota. Trends Biotechnol. 33, 496–503 (2015). - PubMed
  39. Ohishi, A. et al. Bifidobacterium septicemia associated with postoperative probiotic therapy in a neonate with omphalocele. J. Pediatr. 156, 679–681 (2010). - PubMed
  40. Jenke, A., Ruf, E. M., Hoppe, T., Heldmann, M. & Wirth, S. Bifidobacterium septicaemia in an extremely low-birthweight infant under probiotic therapy. Arch. Dis. Child. Fetal Neonatal Ed. 97, F217–F218 (2012). - PubMed
  41. Sung, V. et al. Lactobacillus reuteri to treat infant colic: a meta-analysis. Pediatrics 141, e20171811 (2018). - PubMed
  42. Repa, A. et al. Probiotics (Lactobacillus acidophilus and Bifidobacterium infantis) prevent Nec in Vlbw infants fed breast milk but not formula [corrected]. Pediatr. Res. 77, 381–388 (2015). - PubMed
  43. Dos Reis Buzzo Zermiani, A. P. et al. Evidence of Lactobacillus reuteri to reduce colic in breastfed babies: systematic review and meta-analysis. Complement Ther. Med. 63, 102781 (2021). - PubMed
  44. Gengaimuthu, K. The cross contamination (cross colonization) phenomenon of probiotic use in neonatal intensive care units: putative mechanisms and clinical and research implications. Cureus 10, e2691 (2018). - PubMed
  45. Shaterian, N., Abdi, F., Ghavidel, N. & Alidost, F. Role of cesarean section in the development of neonatal gut microbiota: a systematic review. Open Med. (Wars.) 16, 624–639 (2021). - PubMed
  46. Frese, S. A. et al. Persistence of supplemented Bifidobacterium longum subsp. infantis Evc001 in breastfed infants. mSphere 2, e00501–17 (2017). - PubMed
  47. Crusell, M. K. W. et al. Comparative studies of the gut microbiota in the offspring of mothers with and without gestational diabetes. Front. Cell Infect. Microbiol. 10, 536282 (2020). - PubMed
  48. Zimmermann, P. & Curtis, N. Effect of intrapartum antibiotics on the intestinal microbiota of infants: a systematic review. Arch. Dis. Child. Fetal Neonatal Ed. 105, 201–208 (2020). - PubMed
  49. Nogacka, A. et al. Impact of intrapartum antimicrobial prophylaxis upon the intestinal microbiota and the prevalence of antibiotic resistance genes in vaginally delivered full-term neonates. Microbiome 5, 93 (2017). - PubMed
  50. Wong, W. S. W. et al. Prenatal and peripartum exposure to antibiotics and cesarean section delivery are associated with differences in diversity and composition of the infant meconium microbiome. Microorganisms 8 (2020). - PubMed
  51. Dotterud, C. K. et al. Does maternal perinatal probiotic supplementation alter the intestinal microbiota of mother and child? J. Pediatr. Gastroenterol. Nutr. 61, 200–207 (2015). - PubMed
  52. Gueimonde, M. et al. Effect of maternal consumption of Lactobacillus Gg on transfer and establishment of fecal bifidobacterial microbiota in neonates. J. Pediatr. Gastroenterol. Nutr. 42, 166–170 (2006). - PubMed
  53. Zaidi, A. Z., Moore, S. E. & Okala, S. G. Impact of maternal nutritional supplementation during pregnancy and lactation on the infant gut or breastmilk microbiota: a systematic review. Nutrients 13, 1137 (2021). - PubMed
  54. Altman, D. G. & Bland, J. M. Treatment allocation by minimisation. BMJ 330, 843 (2005). - PubMed
  55. Chernikova, D. A. et al. The premature infant gut microbiome during the first 6 weeks of life differs based on gestational maturity at birth. Pediatr. Res 84, 71–79 (2018). - PubMed
  56. Azad, M. B. et al. Impact of maternal intrapartum antibiotics, method of birth and breastfeeding on gut microbiota during the first year of life: a prospective cohort study. BJOG 123, 983–993 (2016). - PubMed
  57. Nickerson, K. P., Chanin, R. & McDonald, C. Deregulation of intestinal anti-microbial defense by the dietary additive, maltodextrin. Gut Microbes 6, 78–83 (2015). - PubMed

Publication Types