Display options
Share it on

Clin Pharmacokinet. 2022 Jan 04; doi: 10.1007/s40262-021-01101-2. Epub 2022 Jan 04.

Authors' Reply to De Sutter, De Waele, and Vermeulen: "Penetration of Antibacterial Agents into Pulmonary Epithelial Lining Fluid: An Update".

Clinical pharmacokinetics

Emily N Drwiega, Keith A Rodvold

Affiliations

  1. College of Pharmacy, Room 164, University of Illinois Chicago, m/c 886, 833 South Wood Street, Chicago, IL, 60612, USA.
  2. College of Pharmacy, Room 164, University of Illinois Chicago, m/c 886, 833 South Wood Street, Chicago, IL, 60612, USA. [email protected].

PMID: 34982408 DOI: 10.1007/s40262-021-01101-2

[No abstract available.]

References

  1. De Sutter P-J, De Waele J, Vermeulen A. Comment on: “Penetration of antibacterial agents into pulmonary epithelial lining fluid: an update”. Clin Pharmacokinet. 2021. https://doi.org/10.1007/s40262-021-01100-3 - PubMed
  2. Drwiega EN, Rodvold KA. Penetration of antibacterial agents into pulmonary epithelial lining fluid: an update. Clin Pharmacokinet. 2021. https://doi.org/10.1007/s40262-021-01061-7 . - PubMed
  3. Rizk ML, Bhavnani SM, Drusano G, et al. Considerations for dose selection and clinical pharmacokinetics/pharmacodynamics for the development of antibacterial agents. Antimicrob Agents Chemother. 2019;63:e02309-e2318. https://doi.org/10.1128/AAC.02309-18 . - PubMed
  4. Ambrose PG, Bhavnani SM, Ellis-Grosse EJ, Drusano GL. Pharmacokinetic-pharmacodynamic considerations in the design of hospital-acquired or ventilator-associated bacterial pneumonia studies: look before you leap! Clin Infect Dis. 2010;51(Suppl. 1):S103–10. https://doi.org/10.1086/653057 . - PubMed
  5. Rodvold KA, Hope WW, Boyd SE. Considerations for effect site pharmacokinetics to estimate drug exposure: concentrations of antibiotics in the lung. Curr Opin Pharmacol. 2017;36:114–23. https://doi.org/10.1016/j.coph.2017.09.019 . - PubMed
  6. Rodvold KA, George JM, Yoo L. Penetration of anti-infective agents into pulmonary epithelial lining fluid: focus on antibacterial agents. Clin Pharmacokinet. 2011;50(10):637–64. https://doi.org/10.2165/11594090-000000000-00000 . - PubMed
  7. Peters SA. Physiological based pharmacokinetic (PBPK) modeling and simulations: principles, methods, and applications in the pharmaceutical industry. 2nd ed. Hoboken: Wiley; 2022. - PubMed
  8. Shebley M, Sandhu P, Riedmaier AE, et al. Physiological based pharmacokinetic model qualification and reporting procedures for regulatory submissions: a consortium perspective. Clin Pharmacol Ther. 2018;104(1):88–110. https://doi.org/10.1002/cpt.1013 . - PubMed
  9. Themans P, Marquet P, Winkin JJ, Musuamba FT. Towards a generic tool for prediction of meropenem systemic and infection-site exposure: a physiological based pharmacokinetic model for adult patients with pneumonia. Drugs R D. 2019;19:177–89. - PubMed
  10. Salemo SN, Edginton A, Cohen-Wolkowiez M, et al. Development of an adult physiologically based pharmacokinetic model of solithromycin in plasma and epithelial lining fluid. CPT Pharmacomet Syst Pharmacol. 2017;6:814–33. https://doi.org/10.1002/psp4.12252 . - PubMed
  11. Yeo KR, Zhang M, Pan X, et al. Impact of disease on plasma and lung exposure of chloroquine, hydroxychloroquine and azithromycin: application of PBPK modeling. Clin Pharmacol Ther. 2020;108(5):976–84. https://doi.org/10.1002/cpt.1955 . - PubMed
  12. Reddy VP, Elkhaeeb E, Jo H, et al. Pharmacokinetics under the COVID-19 storm! Br J Clin Pharmacol. 2021. https://doi.org/10.1111/bcp.14668 . - PubMed
  13. Fish DN, Gotfried MH, Danziger LH, Rodvold KA. Penetration of clarithromycin into lung tissues from patients undergoing lung resection. Antimicrob Agents Chemother. 1994;38(4):876–8. https://doi.org/10.1128/AAC.38.4.876 . - PubMed
  14. Mouton JW, Theuretzbacher U, Craig WA, Tulkens PM, Derendorf H, Cars O. Tissue concentrations: do we ever learn? J Antimicrob Chemother. 2008;61(2):235–7. https://doi.org/10.1093/jac/dkm476 . - PubMed
  15. Hunt J. Exhaled breath condensate: an evolving tool for noninvasive evaluation of lung disease. J Allergy Clin Immunol. 2002;110:28–34. https://doi.org/10.1067/mai.2002.124966 . - PubMed
  16. Ates HC, Mohsenin H, Wenzel C, et al. Biosensor-enabled multiplexed on-site therapeutic drug monitoring of antibiotics. Adv Mater. 2021. https://doi.org/10.1002/adma.202104555 . - PubMed
  17. Garzon V, Bustos R-H, Pinacho DG. Personalized medicine for antibiotics: the role of nanobiosensors in therapeutic drug monitoring. J Pers Med. 2020;10:147. https://doi.org/10.3390/jpm10040147 . - PubMed
  18. Kruizinga MD, Birkhoff WAJ, van Esdonk MJ, et al. Pharmacokinetics of intravenous and inhaled salbutamol and tobramycin: an exploratory study to investigate the potential of exhaled breath condensate as a matric for pharmacokinetic analysis. Br J Clin Pharmacol. 2020;86(1):175–81. https://doi.org/10.1111/bcp.14156 . - PubMed

Publication Types