Display options
Share it on

J Transl Med. 2022 Jan 03;20(1):4. doi: 10.1186/s12967-021-03213-6.

Increased expression of six-large extracellular vesicle-derived miRNAs signature for nonvalvular atrial fibrillation.

Journal of translational medicine

Panjaree Siwaponanan, Pontawee Kaewkumdee, Wilasinee Phromawan, Suthipol Udompunturak, Nusara Chomanee, Kamol Udol, Kovit Pattanapanyasat, Rungroj Krittayaphong

Affiliations

  1. Siriraj Center of Research Excellence for Microparticle and Exosome in Diseases, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
  2. Division of Cardiology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
  3. Division of Clinical Epidemiology, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
  4. Department of Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
  5. Department of Preventive and Social Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
  6. Division of Cardiology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand. [email protected].

PMID: 34980172 PMCID: PMC8722074 DOI: 10.1186/s12967-021-03213-6

Abstract

BACKGROUNDS: Non-valvular atrial fibrillation (AF) is the most common type of cardiac arrhythmia. AF is caused by electrophysiological abnormalities and alteration of atrial tissues, which leads to the generation of abnormal electrical impulses. Extracellular vesicles (EVs) are membrane-bound vesicles released by all cell types. Large EVs (lEVs) are secreted by the outward budding of the plasma membrane during cell activation or cell stress. lEVs are thought to act as vehicles for miRNAs to modulate cardiovascular function, and to be involved in the pathophysiology of cardiovascular diseases (CVDs), including AF. This study identified lEV-miRNAs that were differentially expressed between AF patients and non-AF controls.

METHODS: lEVs were isolated by differential centrifugation and characterized by Nanoparticle Tracking Analysis (NTA), Transmission Electron Microscopy (TEM), flow cytometry and Western blot analysis. For the discovery phase, 12 AF patients and 12 non-AF controls were enrolled to determine lEV-miRNA profile using quantitative reverse transcription polymerase chain reaction array. The candidate miRNAs were confirmed their expression in a validation cohort using droplet digital PCR (30 AF, 30 controls). Bioinformatics analysis was used to predict their target genes and functional pathways.

RESULTS: TEM, NTA and flow cytometry demonstrated that lEVs presented as cup shape vesicles with a size ranging from 100 to 1000 nm. AF patients had significantly higher levels of lEVs at the size of 101-200 nm than non-AF controls. Western blot analysis was used to confirm EV markers and showed the high level of cardiomyocyte expression (Caveolin-3) in lEVs from AF patients. Nineteen miRNAs were significantly higher (> twofold, p < 0.05) in AF patients compared to non-AF controls. Six highly expressed miRNAs (miR-106b-3p, miR-590-5p, miR-339-3p, miR-378-3p, miR-328-3p, and miR-532-3p) were selected to confirm their expression. Logistic regression analysis showed that increases in the levels of these 6 highly expressed miRNAs associated with AF. The possible functional roles of these lEV-miRNAs may involve in arrhythmogenesis, cell apoptosis, cell proliferation, oxygen hemostasis, and structural remodeling in AF.

CONCLUSION: Increased expression of six lEV-miRNAs reflects the pathophysiology of AF that may provide fundamental knowledge to develop the novel biomarkers for diagnosis or monitoring the patients with the high risk of AF.

© 2021. The Author(s).

Keywords: Atrial fibrillation; Biomarkers; Large extracellular vesicles; Patients; miRNA

References

  1. Circulation. 2013 May 28;127(21):2097-106 - PubMed
  2. Exp Ther Med. 2013 Mar;5(3):723-729 - PubMed
  3. Cardiovasc Res. 2011 Mar 1;89(4):754-65 - PubMed
  4. J Cardiol. 2016 Dec;68(6):472-477 - PubMed
  5. Int J Lab Hematol. 2021 Jun;43(3):506-514 - PubMed
  6. Clin Cardiol. 2019 Apr;42(4):425-431 - PubMed
  7. Arterioscler Thromb Vasc Biol. 2012 Mar;32(3):654-61 - PubMed
  8. Int J Cardiol. 2013 Sep 30;168(2):660-9 - PubMed
  9. Cancers (Basel). 2020 Jul 22;12(8): - PubMed
  10. Apoptosis. 2012 Apr;17(4):410-23 - PubMed
  11. Cell Death Dis. 2015 Mar 12;6:e1677 - PubMed
  12. Nucleic Acids Res. 2014 Jan;42(Database issue):D68-73 - PubMed
  13. Cardiovasc Res. 2020 Jun 1;116(7):1386-1397 - PubMed
  14. J Thorac Dis. 2019 Oct;11(10):4337-4348 - PubMed
  15. Apoptosis. 2020 Jun;25(5-6):388-399 - PubMed
  16. Front Genet. 2013 Jun 28;4:119 - PubMed
  17. Chest. 2007 Mar;131(3):809-815 - PubMed
  18. Cardiovasc Res. 2009 Aug 1;83(3):465-72 - PubMed
  19. Cells. 2020 Apr 22;9(4): - PubMed
  20. Adv Drug Deliv Rev. 2015 Jun 29;87:3-14 - PubMed
  21. Adv Exp Med Biol. 2020;1196:1-9 - PubMed
  22. J Vet Intern Med. 2013 Sep-Oct;27(5):1020-33 - PubMed
  23. Circulation. 2021 Jun 22;143(25):2475-2493 - PubMed
  24. Am J Cardiol. 2007 Sep 15;100(6):989-94 - PubMed
  25. J Clin Invest. 2011 Aug;121(8):2955-68 - PubMed
  26. Biochem Biophys Res Commun. 2011 Feb 4;405(1):42-6 - PubMed
  27. Cancer Epidemiol Biomarkers Prev. 2007 Jun;16(6):1098-106 - PubMed
  28. Arterioscler Thromb Vasc Biol. 2011 Jan;31(1):15-26 - PubMed
  29. Circulation. 2010 Dec 7;122(23):2378-87 - PubMed
  30. Cytokine Growth Factor Rev. 2020 Feb;51:69-74 - PubMed
  31. Int J Mol Sci. 2016 Feb 06;17(2):170 - PubMed
  32. Cell Physiol Biochem. 2016;38(6):2348-65 - PubMed
  33. FASEB J. 2019 May;33(5):5979-5989 - PubMed
  34. Heart Rhythm. 2015 Jan;12(1):3-10 - PubMed
  35. Eur Heart J. 2021 Feb 1;42(5):373-498 - PubMed
  36. J Am Coll Cardiol. 1999 Nov 1;34(5):1577-86 - PubMed
  37. Clin Cardiol. 2020 Dec;43(12):1450-1459 - PubMed
  38. Arterioscler Thromb Vasc Biol. 2015 Apr;35(4):1011-21 - PubMed
  39. PLoS One. 2017 Aug 31;12(8):e0183624 - PubMed
  40. Cardiovasc Drugs Ther. 2017 Jun;31(3):345-365 - PubMed
  41. J Transl Med. 2014 Apr 06;12:90 - PubMed
  42. J Physiol. 2011 Jun 1;589(Pt 11):2669-86 - PubMed
  43. Cell Death Discov. 2020 Jul 30;6:68 - PubMed
  44. Obesity (Silver Spring). 2018 Oct;26(10):1584-1593 - PubMed
  45. J Extracell Vesicles. 2018 Nov 23;7(1):1535750 - PubMed
  46. J Am Heart Assoc. 2014 Oct 27;3(6):e001249 - PubMed
  47. Circ Arrhythm Electrophysiol. 2014 Dec;7(6):1214-22 - PubMed
  48. PLoS One. 2012;7(9):e44906 - PubMed
  49. Artif Cells Nanomed Biotechnol. 2019 Dec;47(1):3976-3984 - PubMed
  50. Circulation. 2013 Apr 9;127(14):1466-75, 1475e1-28 - PubMed
  51. Nat Rev Cardiol. 2015 Feb;12(2):80-90 - PubMed
  52. Thromb Res. 2011 Dec;128(6):e113-8 - PubMed
  53. Cardiovasc Res. 2012 Mar 15;93(4):633-44 - PubMed
  54. Theranostics. 2018 Apr 3;8(9):2565-2582 - PubMed
  55. Heart Rhythm. 2014 Apr;11(4):663-9 - PubMed

Publication Types

Grant support