Display options
Share it on

Diabetologia. 2022 Feb;65(2):343-355. doi: 10.1007/s00125-021-05595-0. Epub 2021 Oct 28.

Activated but functionally impaired memory Tregs are expanded in slow progressors to type 1 diabetes.

Diabetologia

Joanne Boldison, Anna E Long, Rachel J Aitken, Isabel V Wilson, Clare Megson, Stephanie J Hanna, F Susan Wong, Kathleen M Gillespie

Affiliations

  1. Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, UK. [email protected].
  2. Institute of Biomedical & Clinical Science, University of Exeter, Exeter, UK. [email protected].
  3. Diabetes and Metabolism, Bristol Medical School, University of Bristol, Bristol, UK.
  4. Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, UK.

PMID: 34709423 DOI: 10.1007/s00125-021-05595-0

Abstract

AIMS/HYPOTHESIS: Slow progressors to type 1 diabetes are individuals positive for multiple pancreatic islet autoantibodies who have remained diabetes-free for at least 10 years; regulation of the autoimmune response is understudied in this group. Here, we profile CD4

METHODS: Peripheral blood samples were obtained from slow progressors (n = 8), age- and sex-matched to healthy donors. One participant in this study was identified with a raised HbA

RESULTS: Unsupervised clustering on memory CD4

CONCLUSIONS/INTERPRETATIONS: We conclude that activated memory CD4

© 2021. The Author(s).

Keywords: Autoantibodies; CD4+ T cells; Regulatory T cells; Slow progression; Type 1 diabetes

References

  1. Ziegler AG, Rewers M, Simell O et al (2013) Seroconversion to multiple islet autoantibodies and risk of progression to diabetes in children. JAMA 309(23):2473–2479. https://doi.org/10.1001/jama.2013.6285 - PubMed
  2. Insel RA, Dunne JL, Atkinson MA et al (2015) Staging presymptomatic type 1 diabetes: a scientific statement of JDRF, the Endocrine Society, and the American Diabetes Association. Diabetes Care 38(10):1964–1974. https://doi.org/10.2337/dc15-1419 - PubMed
  3. Long AE, Wilson IV, Becker DJ et al (2018) Characteristics of slow progression to diabetes in multiple islet autoantibody-positive individuals from five longitudinal cohorts: the SNAIL study. Diabetologia 61(6):1484–1490. https://doi.org/10.1007/s00125-018-4591-5 - PubMed
  4. Hanna SJ, Powell WE, Long AE et al (2020) Slow progressors to type 1 diabetes lose islet autoantibodies over time, have few islet antigen-specific CD8. Diabetologia 63(6):1174–1185. https://doi.org/10.1007/s00125-020-05114-7 - PubMed
  5. Long SA, Cerosaletti K, Bollyky PL et al (2010) Defects in IL-2R signaling contribute to diminished maintenance of FOXP3 expression in CD4(+)CD25(+) regulatory T-cells of type 1 diabetic subjects. Diabetes 59(2):407–415. https://doi.org/10.2337/db09-0694 - PubMed
  6. Schneider A, Rieck M, Sanda S, Pihoker C, Greenbaum C, Buckner JH (2008) The effector T cells of diabetic subjects are resistant to regulation via CD4+ FOXP3+ regulatory T cells. J Immunol 181(10):7350–7355. https://doi.org/10.4049/jimmunol.181.10.7350 - PubMed
  7. Garg G, Tyler JR, Yang JH et al (2012) Type 1 diabetes-associated IL2RA variation lowers IL-2 signaling and contributes to diminished CD4+CD25+ regulatory T cell function. J Immunol 188(9):4644–4653. https://doi.org/10.4049/jimmunol.1100272 - PubMed
  8. Bingley PJ, Gale EA (1989) Incidence of insulin dependent diabetes in England: a study in the Oxford region, 1985-6. BMJ 298(6673):558–560. https://doi.org/10.1136/bmj.298.6673.558 - PubMed
  9. Long AE, Gillespie KM, Rokni S, Bingley PJ, Williams AJ (2012) Rising incidence of type 1 diabetes is associated with altered immunophenotype at diagnosis. Diabetes 61(3):683–686. https://doi.org/10.2337/db11-0962 - PubMed
  10. Bonifacio E, Yu L, Williams AK et al (2010) Harmonization of glutamic acid decarboxylase and islet antigen-2 autoantibody assays for national institute of diabetes and digestive and kidney diseases consortia. J Clin Endocrinol Metab 95(7):3360–3367. https://doi.org/10.1210/jc.2010-0293 - PubMed
  11. Van Gassen S, Callebaut B, Van Helden MJ et al (2015) FlowSOM: using self-organizing maps for visualization and interpretation of cytometry data. Cytometry A 87(7):636–645. https://doi.org/10.1002/cyto.a.22625 - PubMed
  12. Kotecha N, Krutzik PO, Irish JM (2010) Web-based analysis and publication of flow cytometry experiments. Curr Protoc Cytom Chapter 10(Unit10):17. https://doi.org/10.1002/0471142956.cy1017s53 - PubMed
  13. Mason GM, Lowe K, Melchiotti R et al (2015) Phenotypic complexity of the human regulatory T cell compartment revealed by mass cytometry. J Immunol 195(5):2030–2037. https://doi.org/10.4049/jimmunol.1500703 - PubMed
  14. Brusko TM, Wasserfall CH, Clare-Salzler MJ, Schatz DA, Atkinson MA (2005) Functional defects and the influence of age on the frequency of CD4+ CD25+ T-cells in type 1 diabetes. Diabetes 54(5):1407–1414. https://doi.org/10.2337/diabetes.54.5.1407 - PubMed
  15. Polikowsky HG, Drake KA (2019) Supervised machine learning with CITRUS for single cell biomarker discovery. Methods Mol Biol 1989:309–332. https://doi.org/10.1007/978-1-4939-9454-0_20 - PubMed
  16. Long AE, Tatum M, Mikacenic C, Buckner JH (2017) A novel and rapid method to quantify Treg mediated suppression of CD4 T cells. J Immunol Methods 449:15–22. https://doi.org/10.1016/j.jim.2017.06.009 - PubMed
  17. Lawson JM, Tremble J, Dayan C et al (2008) Increased resistance to CD4+CD25hi regulatory T cell-mediated suppression in patients with type 1 diabetes. Clin Exp Immunol 154(3):353–359. https://doi.org/10.1111/j.1365-2249.2008.03810.x - PubMed
  18. Mori Y, Kodaka T, Kato T, Kanagawa EM, Kanagawa O (2009) Critical role of IFN-gamma in CFA-mediated protection of NOD mice from diabetes development. Int Immunol 21(11):1291–1299. https://doi.org/10.1093/intimm/dxp097 - PubMed
  19. Duhen T, Duhen R, Lanzavecchia A, Sallusto F, Campbell DJ (2012) Functionally distinct subsets of human FOXP3+ Treg cells that phenotypically mirror effector Th cells. Blood 119(19):4430–4440. https://doi.org/10.1182/blood-2011-11-392324 - PubMed
  20. McClymont SA, Putnam AL, Lee MR et al (2011) Plasticity of human regulatory T cells in healthy subjects and patients with type 1 diabetes. J Immunol 186(7):3918–3926. https://doi.org/10.4049/jimmunol.1003099 - PubMed
  21. Shevach EM (2009) Mechanisms of foxp3+ T regulatory cell-mediated suppression. Immunity 30(5):636–645. https://doi.org/10.1016/j.immuni.2009.04.010 - PubMed
  22. Okubo Y, Torrey H, Butterworth J, Zheng H, Faustman DL (2016) Treg activation defect in type 1 diabetes: correction with TNFR2 agonism. Clin Transl Immunol 5(1):e56. https://doi.org/10.1038/cti.2015.43 - PubMed
  23. Pesenacker AM, Wang AY, Singh A et al (2016) A regulatory T-cell gene signature is a specific and sensitive biomarker to identify children with new-onset type 1 diabetes. Diabetes 65(4):1031–1039. https://doi.org/10.2337/db15-0572 - PubMed
  24. Pesenacker AM, Chen V, Gillies J et al (2019) Treg gene signatures predict and measure type 1 diabetes trajectory. JCI Insight 4(6):e123879. https://doi.org/10.1172/jci.insight.123879 - PubMed
  25. McHugh RS, Whitters MJ, Piccirillo CA et al (2002) CD4(+)CD25(+) immunoregulatory T cells: gene expression analysis reveals a functional role for the glucocorticoid-induced TNF receptor. Immunity 16(2):311–323. https://doi.org/10.1016/s1074-7613(02)00280-7 - PubMed
  26. Shimizu J, Yamazaki S, Takahashi T, Ishida Y, Sakaguchi S (2002) Stimulation of CD25(+)CD4(+) regulatory T cells through GITR breaks immunological self-tolerance. Nat Immunol 3(2):135–142. https://doi.org/10.1038/ni759 - PubMed
  27. You S, Poulton L, Cobbold S et al (2009) Key role of the GITR/GITRLigand pathway in the development of murine autoimmune diabetes: a potential therapeutic target. PLoS One 4(11):e7848. https://doi.org/10.1371/journal.pone.0007848 - PubMed
  28. Xufré C, Costa M, Roura-Mir C et al (2013) Low frequency of GITR+ T cells in ex vivo and in vitro expanded Treg cells from type 1 diabetic patients. Int Immunol 25(10):563–574. https://doi.org/10.1093/intimm/dxt020 - PubMed
  29. Ronchetti S, Nocentini G, Riccardi C, Pandolfi PP (2002) Role of GITR in activation response of T lymphocytes. Blood 100(1):350–352. https://doi.org/10.1182/blood-2001-12-0276 - PubMed
  30. Liao G, O'Keeffe MS, Wang G et al (2014) Glucocorticoid-induced TNF receptor family-related protein ligand is requisite for optimal functioning of regulatory CD4(+) T cells. Front Immunol 5:35. https://doi.org/10.3389/fimmu.2014.00035 - PubMed

Publication Types

Grant support