Display options
Share it on

Brain Struct Funct. 2022 Jan;227(1):145-158. doi: 10.1007/s00429-021-02395-5. Epub 2021 Nov 10.

Post-injury ventricular enlargement associates with iron in choroid plexus but not with seizure susceptibility nor lesion atrophy-6-month MRI follow-up after experimental traumatic brain injury.

Brain structure & function

Amna Yasmin, Asla Pitkänen, Pedro Andrade, Tomi Paananen, Olli Gröhn, Riikka Immonen

Affiliations

  1. A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, 1627, Kuopio, Finland.
  2. A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, 1627, Kuopio, Finland. [email protected].

PMID: 34757444 DOI: 10.1007/s00429-021-02395-5

Abstract

Ventricular enlargement is one long-term consequence of a traumatic brain injury, and a risk factor for memory disorders and epilepsy. One underlying mechanisms of the chronic ventricular enlargement is disturbed cerebrospinal-fluid secretion or absorption by choroid plexus. We set out to characterize the different aspects of ventricular enlargement in lateral fluid percussion injury (FPI) rat model by magnetic resonance imaging (MRI) and discovered choroid plexus injury in rats that later developed hydrocephalus. We followed the brain pathology progression for 6 months and studied how the ventricular growth was associated with the choroid plexus injury, cortical lesion expansion, hemorrhagic load or blood perfusion deficits. We correlated MRI findings with the seizure susceptibility in pentylenetetrazol challenge and memory function in Morris water-maze. Choroid plexus injury was validated by ferric iron (Prussian blue) and cytoarchitecture (Nissl) stainings. We discovered choroid plexus injury that accumulates iron in 90% of FPI rats by MRI. The amount of the choroid plexus iron remained unaltered 1-, 3- and 6-month post-injury. During this time, the ventricles kept on growing bilaterally. Ventricular growth did not depend on the cortical lesion severity or the cortical hemorrhagic load suggesting a separate pathology. Instead, the results indicate choroidal injury as one driver of the post-traumatic hydrocephalus, since the higher the choroid plexus iron load the larger were the ventricles at 6 months. The ventricle size or the choroid plexus iron load did not associate with seizure susceptibility. Cortical hypoperfusion and memory deficits were worse in rats with greater ventricular growth.

© 2021. The Author(s).

Keywords: Brain–CSF barrier; Epileptogenesis; Heme; Idiopathic normal pressure hydrocephalus; Ventriculomegaly

References

  1. Andrade P, Paananen T, Ciszek R, Lapinlampi N, Pitkänen A (2018) Algorithm for automatic detection of spontaneous seizures in rats with post-traumatic epilepsy. J Neurosci Methods 307:37–45. https://doi.org/10.1016/j.jneumeth.2018.06.015 - PubMed
  2. Apostolova LG, Green AE, Babakchanian S, Hwang KS, Chou Y-Y, Toga AW, Thompson PM (2012) Hippocampal atrophy and ventricular enlargement in normal aging, mild cognitive impairment (MCI), and Alzheimer disease. Alzheimer Dis Assoc Disord 26(1):17–27. https://doi.org/10.1097/WAD.0b013e3182163b62 - PubMed
  3. Boespflug EL, Iliff JJ (2018) The emerging relationship between interstitial fluid-cerebrospinal fluid exchange, amyloid-β, and sleep. Biol Psychiat 83(4):328–336. https://doi.org/10.1016/j.biopsych.2017.11.031 - PubMed
  4. Bramlett HM, Dalton Dietrich W (2002) Quantitative structural changes in white and gray matter 1 year following traumatic brain injury in rats. Acta Neuropathol 103(6):607–614. https://doi.org/10.1007/s00401-001-0510-8 - PubMed
  5. Brezova V, Moen KG, Skandsen T, Vik A, Brewer JB, Salvesen O, Håberg AK (2014) Prospective longitudinal MRI study of brain volumes and diffusion changes during the first year after moderate to severe traumatic brain injury. NeuroImage Clinical 5:128–140. https://doi.org/10.1016/j.nicl.2014.03.012 - PubMed
  6. Chen L-J, Wang Y-J, Chen J-R, Tseng G-F (2017) Hydrocephalus compacted cortex and hippocampus and altered their output neurons in association with spatial learning and memory deficits in rats. Brain Pathol (Zurich, Switzerland) 27(4):419–436. https://doi.org/10.1111/bpa.12414 - PubMed
  7. Clausen F, Hillered L (2005) Intracranial pressure changes during fluid percussion, controlled cortical impact and weight drop injury in rats. Acta Neurochirurgica 147(7):775–80. https://doi.org/10.1007/s00701-005-0550-2 (discussion 780) - PubMed
  8. Dadas A, Janigro D (2019) Breakdown of blood brain barrier as a mechanism of post-traumatic epilepsy. Neurobiol Dis 123:20–26. https://doi.org/10.1016/j.nbd.2018.06.022 - PubMed
  9. Damkier HH, Brown PD, Praetorius J (2013) Cerebrospinal fluid secretion by the choroid plexus. Physiol Rev 93(4):1847–1892. https://doi.org/10.1152/physrev.00004.2013 - PubMed
  10. Daou B, Klinge P, Tjoumakaris S, Rosenwasser RH, Jabbour P (2016) Revisiting secondary normal pressure hydrocephalus: does it exist? A review. Neurosurg Focus 41(3):E6. https://doi.org/10.3171/2016.6.FOCUS16189 - PubMed
  11. Ding GL, Chopp M, Poulsen DJ, Li L, Changsheng Qu, Li Q, Nejad-Davarani SP et al (2013) MRI of neuronal recovery after low-dose methamphetamine treatment of traumatic brain injury in rats. PLoS One 8(4):e61241. https://doi.org/10.1371/journal.pone.0061241 - PubMed
  12. Eide PK, Valnes LM, Pripp AH, Mardal K-A, Ringstad G (2020) Delayed clearance of cerebrospinal fluid tracer from choroid plexus in idiopathic normal pressure hydrocephalus. J Cereb Blood Flow Metab 40(9):1849–1858. https://doi.org/10.1177/0271678X19874790 - PubMed
  13. Ge R, Tornero D, Hirota M, Monni E, Laterza C, Lindvall O, Kokaia Z (2017) Choroid plexus-cerebrospinal fluid route for monocyte-derived macrophages after stroke. J Neuroinflammation 14(1):153. https://doi.org/10.1186/s12974-017-0909-3 - PubMed
  14. Glushakova OY, Glushakov AV, Yang L, Hayes RL, Valadka AB (2020) Intracranial pressure monitoring in experimental traumatic brain injury: implications for clinical management. J Neurotrauma 37(22):2401–2413. https://doi.org/10.1089/neu.2018.6145 - PubMed
  15. Henning EC, Ruetzler CA, Gaudinski MR, Hu T-C, Latour LL, Hallenbeck JM, Warach S (2009) Feridex preloading permits tracking of CNS-resident macrophages after transient middle cerebral artery occlusion. J Cereb Blood Flow Metab 29(7):1229–1239. https://doi.org/10.1038/jcbfm.2009.48 - PubMed
  16. Hladky SB, Barrand MA (2016) Fluid and ion transfer across the blood-brain and blood-cerebrospinal fluid barriers; a comparative account of mechanisms and roles. Fluids Barriers CNS 13(1):19. https://doi.org/10.1186/s12987-016-0040-3 - PubMed
  17. Hu Q, Vakhmjanin A, Li Bo, Tang J, Zhang JH (2014) Hyperbaric oxygen therapy fails to reduce hydrocephalus formation following subarachnoid hemorrhage in rats. Med Gas Res 4:12. https://doi.org/10.1186/2045-9912-4-12 - PubMed
  18. Hubert V, Chauveau F, Dumot C, Ong E, Berner L-P, Canet-Soulas E, Ghersi-Egea J-F, Wiart M (2019) Clinical imaging of choroid plexus in health and in brain disorders: a mini-review. Front Mol Neurosci 12:34. https://doi.org/10.3389/fnmol.2019.00034 - PubMed
  19. Jessen NA, Munk ASF, Lundgaard I, Nedergaard M (2015) The glymphatic system: a beginner’s guide. Neurochem Res 40(12):2583–2599. https://doi.org/10.1007/s11064-015-1581-6 - PubMed
  20. Kaur C, Singh J, Lim MK, Ng BL, Yap EP, Ling EA (1996) Studies of the choroid plexus and its associated epiplexus cells in the lateral ventricles of rats following an exposure to a single non-penetrative blast. Arch Histol Cytol 59(3):239–248. https://doi.org/10.1679/aohc.59.239 - PubMed
  21. Kharatishvil I, R Immonen, O Gröhn, and A Pitkänen (2007) ‘Quantitative diffusion MRI of hippocampus as a surrogate marker for post-traumatic epileptogenesis’. Brain. 130 (Pt 12): 3155–68. https://doi.org/10.1093/brain/awm268 . - PubMed
  22. Kharatishvili I, Nissinen JP, McIntosh TK, Pitkänen A (2006) A model of posttraumatic epilepsy induced by lateral fluid-percussion brain injury in rats. Neuroscience 140(2):685–697. https://doi.org/10.1016/j.neuroscience.2006.03.012 - PubMed
  23. Kowalski RG, Weintraub AH, Rubin BA, Gerber DJ, Olsen AJ (2018) Impact of timing of ventriculoperitoneal shunt placement on outcome in posttraumatic hydrocephalus. J Neurosurg. 130:406–417. https://doi.org/10.3171/2017.7.JNS17555 - PubMed
  24. Kress BT, Iliff JJ, Xia M, Wang M, Wei HS, Zeppenfeld D, Xie L et al (2014) Impairment of paravascular clearance pathways in the aging brain. Ann Neurol 76(6):845–861. https://doi.org/10.1002/ana.24271 - PubMed
  25. Lapinlampi N, Melin E, Aronica E, Bankstahl JP, Becker A, Bernard C, Gorter JA et al (2017) Common data elements and data management: remedy to cure underpowered preclinical studies. Epilepsy Res 129(January):87–90. https://doi.org/10.1016/j.eplepsyres.2016.11.010 - PubMed
  26. Liu S, Grigoryan MM, Vasilevko V, Sumbria RK, Paganini-Hill A, Cribbs DH, Fisher MJ (2014) Comparative analysis of H and E and prussian blue staining in a mouse model of cerebral microbleeds. J Histochem Cytochem 62(11):767–773. https://doi.org/10.1369/0022155414546692 - PubMed
  27. Luikku AJ, Hall A, Nerg O, Koivisto AM, Hiltunen M, Helisalmi S, Herukka S-K et al (2019) Predicting development of Alzheimer’s disease in patients with shunted idiopathic normal pressure hydrocephalus. J Alzheimer’s Dis 71(4):1233–1243. https://doi.org/10.3233/JAD-190334 - PubMed
  28. Malm J, Graff-Radford NR, Ishikawa M, Kristensen Bo, Leinonen V, Mori E, Owler BK, Tullberg M, Williams MA, Relkin NR (2013) Influence of comorbidities in idiopathic normal pressure hydrocephalus-research and clinical care. A report of the ISHCSF task force on comorbidities in INPH. Fluids Barriers CNS 10(1):22. https://doi.org/10.1186/2045-8118-10-22 - PubMed
  29. Marchi N, Banjara M, Janigro D (2016) Blood-brain barrier, bulk flow, and interstitial clearance in epilepsy. J Neurosci Methods 260:118–124. https://doi.org/10.1016/j.jneumeth.2015.06.011 - PubMed
  30. Marmarou A, Foda MA, Bandoh K, Yoshihara M, Yamamoto T, Tsuji O, Zasler N, Ward JD, Young HF (1996) Posttraumatic ventriculomegaly: hydrocephalus or atrophy? A new approach for diagnosis using CSF dynamics. J Neurosurg 85(6):1026–1035. https://doi.org/10.3171/jns.1996.85.6.1026 - PubMed
  31. Mazzini L, Campini R, Angelino E, Rognone F, Pastore I, Oliveri G (2003) Posttraumatic hydrocephalus: a clinical, neuroradiologic, and neuropsychologic assessment of long-term outcome. Arch Phys Med Rehabil 84(11):1637–1641. https://doi.org/10.1053/s0003-9993(03)00314-9 - PubMed
  32. Millward JM, Ariza A, de Schellenberger D, Berndt L-V, Schellenberger E, Waiczies S, Taupitz M, Kobayashi Y, Wagner S, Infante-Duarte C (2019) Application of europium-doped very small iron oxide nanoparticles to visualize neuroinflammation with MRI and fluorescence microscopy. Neuroscience 403(April):136–144. https://doi.org/10.1016/j.neuroscience.2017.12.014 - PubMed
  33. Millward JM, Schnorr J, Taupitz M, Wagner S, Wuerfel JT, Infante-Duarte C (2013) Iron oxide magnetic nanoparticles highlight early involvement of the choroid plexus in central nervous system inflammation. ASN Neuro 5(1):e00110. https://doi.org/10.1042/AN20120081 - PubMed
  34. Mishra M, Singh R, Mukherjee S, Sharma D (2013) Dehydroepiandrosterone’s antiepileptic action in FeCl3-induced epileptogenesis involves upregulation of glutamate transporters. Epilepsy Res 106(1–2):83–91. https://doi.org/10.1016/j.eplepsyres.2013.06.008 - PubMed
  35. Morris R (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 11(1):47–60 - PubMed
  36. Murtha LA, Yang Q, Parsons MW, Levi CR, Beard DJ, Spratt NJ, McLeod DD (2014) Cerebrospinal fluid is drained primarily via the spinal canal and olfactory route in young and aged spontaneously hypertensive rats. Fluids Barriers CNS 11:12. https://doi.org/10.1186/2045-8118-11-12 - PubMed
  37. Nestor SM, R Rupsingh, M Borrie, M Smith, V Accomazzi, JL Wells, J Fogarty, R Bartha, Alzheimer’s Disease Neuroimaging Initiative (2008) Ventricular enlargement as a possible measure of alzheimer’s disease progression validated using the Alzheimer’s disease neuroimaging initiative database. Brain. 131 (Pt 9): 2443–54. https://doi.org/10.1093/brain/awn146 . - PubMed
  38. Olopade FE, Shokunbi MT, Sirén A-L (2012) The Relationship between ventricular dilatation, neuropathological and neurobehavioural changes in hydrocephalic rats. Fluids Barriers CNS 9(1):19. https://doi.org/10.1186/2045-8118-9-19 - PubMed
  39. Piatt JH, Carlson CV (1996) Hydrocephalus and epilepsy: an actuarial analysis. Neurosurgery 39(4):722–27. https://doi.org/10.1097/00006123-199610000-00014 - PubMed
  40. Qi Z, Zhang H, Chuhua Fu, Liu X, Chen Bo, Dang Y, Chen H, Liu L (2017) Prolonged hydrocephalus induced by intraventricular hemorrhage in rats is reduced by curcumin therapy. Neurosci Lett 637:120–125. https://doi.org/10.1016/j.neulet.2016.11.038 - PubMed
  41. Ren Z, Iliff JJ, Yang L, Yang J, Chen X, Chen MJ, Giese RN, Wang B, Shi X, Nedergaard M (2013) “Hit & Run” model of closed-skull traumatic brain injury (TBI) reveals complex patterns of post-traumatic AQP4 dysregulation. J Cereb Blood Flow Metab 33(6):834–845. https://doi.org/10.1038/jcbfm.2013.30 - PubMed
  42. Ringstad G, Svein Are Sirirud Vatnehol, and Per Kristian Eide (2017) glymphatic MRI in idiopathic normal pressure hydrocephalus. Brain. 140(10): 2691–2705. https://doi.org/10.1093/brain/awx191 . - PubMed
  43. Sharma V, Prakash Babu P, Singh A, Singh S, Singh R (2007) Iron-induced experimental cortical seizures: electroencephalographic mapping of seizure spread in the subcortical brain areas. Seizure 16(8):680–690. https://doi.org/10.1016/j.seizure.2007.05.012 - PubMed
  44. Stadler A, Schima W, Ba-Ssalamah A, Kettenbach J, Eisenhuber E (2007) Artifacts in body MR imaging: their appearance and how to eliminate them. Eur Radiol 17(5):1242–1255. https://doi.org/10.1007/s00330-006-0470-4 - PubMed
  45. Sullan MJ, Asken BM, Jaffee MS, DeKosky ST, Bauer RM (2018) Glymphatic system disruption as a mediator of brain trauma and chronic traumatic encephalopathy. Neurosci Biobehav Rev 84:316–324. https://doi.org/10.1016/j.neubiorev.2017.08.016 - PubMed
  46. Szmydynger-Chodobska J, Strazielle N, Gandy JR, Keefe TH, Zink BJ, Ghersi-Egea J-F, Chodobski A (2012) Posttraumatic invasion of monocytes across the blood-cerebrospinal fluid barrier. J Cereb Blood Flow Metab 32(1):93–104. https://doi.org/10.1038/jcbfm.2011.111 - PubMed
  47. Szmydynger-Chodobska J, Strazielle N, Zink BJ, Ghersi-Egea J-F, Chodobski A (2009) The role of the choroid plexus in neutrophil invasion after traumatic brain injury. J Cereb Blood Flow Metab 29(9):1503–1516. https://doi.org/10.1038/jcbfm.2009.71 - PubMed
  48. Turtzo LC, Budde MD, Gold EM, Lewis BK, Janes L, Yarnell A, Grunberg NE, Watson W, Frank JA (2013) The evolution of traumatic brain injury in a rat focal contusion model. NMR Biomed 26(4):468–479. https://doi.org/10.1002/nbm.2886 - PubMed
  49. Wang Y, Li Z, Zhang X, Chen Z, Li D, Chen W, Jiamei Gu, Sun D, Rong T, Kwan P (2021) Development and validation of a clinical score to predict late seizures after intracerebral hemorrhage in Chinese. Epilepsy Res 172(May):106600. https://doi.org/10.1016/j.eplepsyres.2021.106600 - PubMed
  50. Weintraub AH, Gerber DJ, Kowalski RG (2017) Posttraumatic hydrocephalus as a confounding influence on brain injury rehabilitation: incidence, clinical characteristics, and outcomes. Arch Phys Med Rehabil 98(2):312–319. https://doi.org/10.1016/j.apmr.2016.08.478 - PubMed
  51. Wiart M, Davoust N, Pialat J-B, Desestret V, Moucharrafie S, Moucharaffie S, Cho T-H et al (2007) MRI monitoring of neuroinflammation in mouse focal ischemia. Stroke 38(1):131–137. https://doi.org/10.1161/01.STR.0000252159.05702.00 - PubMed
  52. Willmore LJ, Rubin JJ (1981) Antiperoxidant pretreatment and iron-induced epileptiform discharges in the rat: EEG and histopathologic studies. Neurology 31(1):63–69. https://doi.org/10.1212/wnl.31.1.63 - PubMed
  53. Xiang J, Routhe LJ, Andrew Wilkinson D, Hua Ya, Moos T, Xi G, Keep RF (2017) The choroid plexus as a site of damage in hemorrhagic and ischemic stroke and its role in responding to injury. Fluids Barriers CNS 14(1):8. https://doi.org/10.1186/s12987-017-0056-3 - PubMed
  54. Zhang C, Wang X, Wang Y, Zhang J-G, Wenhan Hu, Ge M, Zhang K, Shao X (2014) Risk factors for post-stroke seizures: a systematic review and meta-analysis. Epilepsy Res 108(10):1806–1816. https://doi.org/10.1016/j.eplepsyres.2014.09.030 - PubMed
  55. Zhao J, Chen Z, Xi G, Keep RF, Hua Ya (2014) Deferoxamine attenuates acute hydrocephalus after traumatic brain injury in rats. Transl Stroke Res 5(5):586–594. https://doi.org/10.1007/s12975-014-0353-y - PubMed

Publication Types

Grant support