Display options
Share it on

Sci Adv. 2020 Jun 26;6(26):eaba4353. doi: 10.1126/sciadv.aba4353. eCollection 2020 Jun.

Synoviocyte-targeted therapy synergizes with TNF inhibition in arthritis reversal.

Science advances

Mattias N D Svensson, Martina Zoccheddu, Shen Yang, Gyrid Nygaard, Christian Secchi, Karen M Doody, Kamil Slowikowski, Fumitaka Mizoguchi, Frances Humby, Rebecca Hands, Eugenio Santelli, Cristiano Sacchetti, Kuninobu Wakabayashi, Dennis J Wu, Christopher Barback, Rizi Ai, Wei Wang, Gary P Sims, Piotr Mydel, Tsuyoshi Kasama, David L Boyle, Francesco Galimi, David Vera, Michel L Tremblay, Soumya Raychaudhuri, Michael B Brenner, Gary S Firestein, Costantino Pitzalis, Anna-Karin H Ekwall, Stephanie M Stanford, Nunzio Bottini

Affiliations

  1. Department of Medicine, Altman Clinical and Translational Research Institute, University of California, San Diego, La Jolla, CA 92093, USA.
  2. Division of Cellular Biology, La Jolla Institute for Immunology, La Jolla, CA 92037, USA.
  3. Department of Biomedical Sciences, National Institute of Biostructures and Biosystems, University of Sassari Medical School, 07100 Sassari, Italy.
  4. Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
  5. Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
  6. Partners HealthCare Personalized Medicine, Boston, MA 02115, USA.
  7. Program in Medical and Population Genetics, Broad Institute of Massachusetts Technical Institute and Harvard University, Cambridge, MA 02138, USA.
  8. Bioinformatics and Integrative Genomics, Harvard University, Cambridge, MA 02138, USA.
  9. Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8519, Japan.
  10. Centre for Experimental Medicine and Rheumatology, John Vane Science Centre, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
  11. Division of Rheumatology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan.
  12. Department of Radiology, University of California, La Jolla, CA 92093, USA.
  13. UCSD Molecular Imaging Program, University of California, La Jolla, CA 92093, USA.
  14. Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA.
  15. Respiratory, Inflammation and Autoimmunity, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA.
  16. Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, The Laboratory Building, 5th Floor, 5021 Bergen, Norway.
  17. Department of Microbiology, Jagiellonian University, Kraków, Poland.
  18. Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montréal, Québec H3A 1A3, Canada.
  19. Department of Biochemistry, McGill University, Montréal, Québec H3A 1A3, Canada.
  20. Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, Québec H3A 1A3, Canada.
  21. Rheumatology Unit, Karolinska Institutet, Stockholm S-171 76, Sweden.
  22. Institute of Inflammation and Repair, University of Manchester, Manchester M13 9PT, UK.
  23. Department of Rheumatology and Inflammation Research, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
  24. Centre for Bone and Arthritis Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.

PMID: 32637608 PMCID: PMC7319753 DOI: 10.1126/sciadv.aba4353

Abstract

Fibroblast-like synoviocytes (FLS) are joint-lining cells that promote rheumatoid arthritis (RA) pathology. Current disease-modifying antirheumatic agents (DMARDs) operate through systemic immunosuppression. FLS-targeted approaches could potentially be combined with DMARDs to improve control of RA without increasing immunosuppression. Here, we assessed the potential of immunoglobulin-like domains 1 and 2 (Ig1&2), a decoy protein that activates the receptor tyrosine phosphatase sigma (PTPRS) on FLS, for RA therapy. We report that PTPRS expression is enriched in synovial lining RA FLS and that Ig1&2 reduces migration of RA but not osteoarthritis FLS. Administration of an Fc-fusion Ig1&2 attenuated arthritis in mice without affecting innate or adaptive immunity. Furthermore, PTPRS was down-regulated in FLS by tumor necrosis factor (TNF) via a phosphatidylinositol 3-kinase-mediated pathway, and TNF inhibition enhanced PTPRS expression in arthritic joints. Combination of ineffective doses of TNF inhibitor and Fc-Ig1&2 reversed arthritis in mice, providing an example of synergy between FLS-targeted and immunosuppressive DMARD therapies.

Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).

References

  1. Science. 2011 Apr 22;332(6028):484-8 - PubMed
  2. Pharmacol Ther. 2015 Apr;148:114-31 - PubMed
  3. Mol Cell Biol. 2002 Mar;22(6):1881-92 - PubMed
  4. Arthritis Rheumatol. 2015 Sep;67(9):2283-91 - PubMed
  5. Drugs. 1999 Jun;57(6):945-66 - PubMed
  6. J Immunol. 1991 May 15;146(10):3365-71 - PubMed
  7. Nat Commun. 2018 May 15;9(1):1921 - PubMed
  8. Brain Behav Immun. 2017 Oct;65:111-124 - PubMed
  9. Curr Rheumatol Rep. 2012 Oct;14(5):472-80 - PubMed
  10. J Virol. 2015 Oct;89(19):9974-85 - PubMed
  11. Immunol Rev. 2010 Jan;233(1):256-66 - PubMed
  12. Arthritis Res Ther. 2011 Mar 07;13(2):R40 - PubMed
  13. Nat Commun. 2018 Feb 23;9(1):789 - PubMed
  14. J Immunol. 2008 Feb 1;180(3):1971-8 - PubMed
  15. Ann Rheum Dis. 2016 Sep;75(9):1667-73 - PubMed
  16. Cell Rep. 2014 Oct 23;9(2):591-604 - PubMed
  17. Arthritis Rheum. 2013 May;65(5):1171-80 - PubMed
  18. Sci Transl Med. 2015 May 20;7(288):288ra76 - PubMed
  19. Arthritis Care Res (Hoboken). 2012 May;64(5):625-39 - PubMed
  20. Am J Pathol. 2012 May;180(5):1906-16 - PubMed
  21. Curr Protoc Immunol. 2008 May;Chapter 15:Unit 15.22 - PubMed
  22. J Exp Med. 2008 Oct 27;205(11):2491-7 - PubMed
  23. Ann Rheum Dis. 2012 Mar;71(3):440-7 - PubMed
  24. Science. 2007 Feb 16;315(5814):1006-10 - PubMed
  25. Nat Rev Rheumatol. 2013 Jan;9(1):24-33 - PubMed
  26. J Leukoc Biol. 2015 Jan;97(1):135-45 - PubMed
  27. Methods Mol Med. 2004;98:207-16 - PubMed
  28. N Engl J Med. 2011 Dec 8;365(23):2205-19 - PubMed
  29. PLoS One. 2014 Sep 19;9(9):e107914 - PubMed
  30. Arthritis Rheum. 1986 Aug;29(8):1039-49 - PubMed
  31. Trends Mol Med. 2010 Oct;16(10):458-68 - PubMed
  32. Immunity. 2015 Aug 18;43(2):277-88 - PubMed
  33. Proc Natl Acad Sci U S A. 2011 May 17;108(20):8402-7 - PubMed
  34. Nat Rev Rheumatol. 2018 Dec;14(12):714-726 - PubMed
  35. Nat Genet. 1999 Mar;21(3):330-3 - PubMed
  36. Nat Clin Pract Rheumatol. 2009 Jan;5(1):1 - PubMed
  37. Immunity. 2013 Jul 25;39(1):111-22 - PubMed
  38. Arthritis Rheum. 1991 May;34(5):505-14 - PubMed
  39. Cell. 2007 May 18;129(4):823-37 - PubMed
  40. Arthritis Rheum. 1988 Mar;31(3):315-24 - PubMed
  41. Arthritis Rheum. 2004 May;50(5):1412-9 - PubMed
  42. Arthritis Rheumatol. 2018 Feb;70(2):193-203 - PubMed
  43. Nat Med. 2009 Dec;15(12):1414-20 - PubMed
  44. Nat Commun. 2017 Oct 20;8(1):1060 - PubMed
  45. Science. 2009 Oct 23;326(5952):592-6 - PubMed
  46. Nature. 2019 Jun;570(7760):246-251 - PubMed

Publication Types

Grant support