Display options
Share it on

Cancer Med. 2022 Jan;11(1):151-165. doi: 10.1002/cam4.4439. Epub 2021 Nov 24.

Comparison of survival, acute toxicities, and dose-volume parameters between intensity-modulated radiotherapy with or without internal target volume delineation method and three-dimensional conformal radiotherapy in cervical cancer patients: A retrospective and propensity score-matched analysis.

Cancer medicine

Yu-Qin Liang, Sen-Quan Feng, Wen-Jia Xie, Qiong-Zhi Jiang, Yan-Fen Yang, Ren Luo, Elizabeth A Kidd, Tian-Tian Zhai, Liang-Xi Xie

Affiliations

  1. Department of Radiation Oncology, Xiang'an Hospital of Xiamen University, Xiamen, China.
  2. Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou, China.
  3. Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
  4. Department of Science and Education, Xiang'an Hospital of Xiamen University, Xiamen, China.
  5. Department of Radiation Oncology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
  6. Faculty of Biology, University of Freiburg, Freiburg, Germany.
  7. Department of Radiation Oncology, Stanford University, Stanford, California, USA.

PMID: 34821082 PMCID: PMC8704157 DOI: 10.1002/cam4.4439

Abstract

BACKGROUND: To evaluate whether the use of the internal target volume (ITV) delineation method improves the performance of intensity-modulated radiotherapy (IMRT) and three-dimensional conformal radiotherapy (3DCRT) in terms of survival, acute toxicities, and dose-volume parameters.

METHODS: A total number of 477 cervical cancer patients who received concurrent chemoradiotherapy (CCRT) from January 2012 to December 2016 were retrospectively analyzed. They were divided into four groups: the non-ITV (N-ITV) + IMRT, ITV + IMRT, N-ITV + 3DCRT, and ITV + 3DCRT groups, with 76, 41, 327, and 33 patients, respectively. Survival analysis was performed with the Kaplan-Meier and the log-rank tests, and acute toxicity analysis was performed with the chi-squared test and the binary logistic regression test. Using the propensity score matching (PSM) method, 92 patients were matched among the four groups, and their dose-volume parameters were assessed with the Kruskal-Wallis method.

RESULTS: The median follow-up time was 49 months (1-119) for overall survival (OS). The 5-year OS rate was 66.4%. The ITV delineation method was an independent prognostic factor for OS (HR [95% CI]: 0.52 [0.27, 0.98], p = 0.044) and progression-free survival (PFS) (HR [95% CI]: 0.59 [0.36, 0.99], p = 0.045). The ITV + IMRT group had the lowest incidence rate (22%) and the N-ITV + IMRT group had the highest incidence rate of grade ≥3 hematological toxicity (HT) (46.1%) among the four groups. The pelvic bone marrow relative V10, V20, and V30 in the N-ITV + IMRT group was higher than those in the ITV + IMRT and N-ITV + 3DCRT groups (p < 0.05).

CONCLUSIONS: The use of ITV for IMRT treatment planning was associated with improved overall survival and progression-free survival, with lower HT rate.

© 2021 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

Keywords: cervical cancer; hematological toxicity; high-dose rate brachytherapy; intensity-modulated radiotherapy; internal target volume; propensity score-matched analysis

References

  1. Lancet Oncol. 2018 Aug;19(8):e393 - PubMed
  2. Int J Radiat Oncol Biol Phys. 2014 Sep 1;90(1):147-54 - PubMed
  3. Eur J Gynaecol Oncol. 2014;35(1):62-6 - PubMed
  4. Int J Radiat Oncol Biol Phys. 2012 Jul 1;83(3):e353-62 - PubMed
  5. Br J Radiol. 2015 Oct;88(1054):20140783 - PubMed
  6. Eur J Gynaecol Oncol. 2015;36(3):278-82 - PubMed
  7. Radiother Oncol. 2014 Jun;111(3):442-5 - PubMed
  8. Radiother Oncol. 2017 Jan;122(1):116-121 - PubMed
  9. Int J Radiat Oncol Biol Phys. 2001 Sep 1;51(1):261-6 - PubMed
  10. Acta Oncol. 2017 May;56(5):667-674 - PubMed
  11. Int J Radiat Oncol Biol Phys. 2011 Feb 1;79(2):348-55 - PubMed
  12. Radiother Oncol. 2004 Apr;71(1):73-9 - PubMed
  13. J Cancer Res Ther. 2016 Apr-Jun;12(2):975-80 - PubMed
  14. Clin Oncol (R Coll Radiol). 2014 Apr;26(4):185-96 - PubMed
  15. Int J Radiat Oncol Biol Phys. 2009 Jan 1;73(1):235-41 - PubMed
  16. Radiother Oncol. 2020 Jun;147:22-29 - PubMed
  17. Int J Radiat Oncol Biol Phys. 2002 Dec 1;54(5):1388-96 - PubMed
  18. Gynecol Oncol. 2018 Dec;151(3):444-448 - PubMed
  19. Radiother Oncol. 2015 Dec;117(3):536-41 - PubMed
  20. Int J Radiat Oncol Biol Phys. 2012 Aug 1;83(5):1617-23 - PubMed
  21. Int J Radiat Oncol Biol Phys. 2017 Mar 1;97(3):536-545 - PubMed
  22. Radiat Oncol. 2018 Sep 14;13(1):177 - PubMed
  23. Cancer Med. 2022 Jan;11(1):151-165 - PubMed
  24. Radiat Oncol. 2015 Aug 25;10:180 - PubMed
  25. Gynecol Oncol. 2011 Jul;122(1):9-13 - PubMed
  26. Int J Radiat Oncol Biol Phys. 2006 Jan 1;64(1):189-96 - PubMed
  27. Int J Radiat Oncol Biol Phys. 2011 Mar 1;79(3):800-7 - PubMed
  28. Radiother Oncol. 2005 Jun;75(3):293-302 - PubMed
  29. Gynecol Oncol. 2015 Mar;136(3):521-8 - PubMed
  30. Int J Gynecol Cancer. 2018 Jun;28(5):1029-1037 - PubMed
  31. Int J Radiat Oncol Biol Phys. 2008 Apr 1;70(5):1507-15 - PubMed
  32. Int J Radiat Oncol Biol Phys. 2011 Mar 15;79(4):1043-7 - PubMed
  33. J Natl Compr Canc Netw. 2019 Jan;17(1):64-84 - PubMed
  34. Int J Gynecol Cancer. 2016 May;26(4):770-6 - PubMed
  35. Acta Oncol. 2017 Nov;56(11):1472-1478 - PubMed
  36. Int J Radiat Oncol Biol Phys. 2014 Nov 15;90(4):802-8 - PubMed
  37. Cancer Radiother. 2016 Jul;20(5):370-6 - PubMed
  38. Phys Imaging Radiat Oncol. 2021 Feb 06;17:84-90 - PubMed
  39. Int J Radiat Oncol Biol Phys. 2014 Nov 1;90(3):673-9 - PubMed
  40. J Clin Oncol. 2018 Aug 20;36(24):2538-2544 - PubMed
  41. CA Cancer J Clin. 2018 Nov;68(6):394-424 - PubMed
  42. Int J Radiat Oncol Biol Phys. 2013 Sep 1;87(1):100-5 - PubMed
  43. Radiother Oncol. 2016 Sep;120(3):526-531 - PubMed
  44. Int J Radiat Oncol Biol Phys. 2013 Nov 1;87(3):542-8 - PubMed

Publication Types