Display options
Share it on

World J Microbiol Biotechnol. 2022 Jan 06;38(2):35. doi: 10.1007/s11274-021-03221-0.

Analysis of glucose and xylose metabolism in new indigenous Meyerozyma caribbica strains isolated from corn residues.

World journal of microbiology & biotechnology

Viviani Tadioto, Letícia M Milani, Évelyn T Barrilli, Cristina W Baptista, Letícia Bohn, Aline Dresch, Ricardo Harakava, Odinei Fogolari, Guilherme M Mibielli, João P Bender, Helen Treichel, Boris U Stambuk, Caroline Müller, Sérgio L Alves

Affiliations

  1. Laboratory of Biochemistry and Genetics, Campus Chapecó, Federal University of Fronteira Sul, Rodovia SC 484, Km 2, 89815-899, Bairro Fronteira Sul, Chapecó, SC, Brazil.
  2. Laboratory of Solid Waste, Campus Chapecó, Federal University of Fronteira Sul, Chapecó, SC, Brazil.
  3. Laboratory of Phytopathological Biochemistry, Biological Institute, São Paulo, SP, Brazil.
  4. Laboratory of Microbiology and Bioprocesses, Campus Erechim, Federal University of Fronteira Sul, Erechim, RS, Brazil.
  5. Laboratory of Biochemistry and Molecular Biotechnology of Yeasts, Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil.
  6. Laboratory of Biochemistry and Genetics, Campus Chapecó, Federal University of Fronteira Sul, Rodovia SC 484, Km 2, 89815-899, Bairro Fronteira Sul, Chapecó, SC, Brazil. [email protected].

PMID: 34989919 DOI: 10.1007/s11274-021-03221-0

Abstract

Aiming to broaden the base of knowledge about wild yeasts, four new indigenous strains were isolated from corn residues, and phylogenetic-tree assemblings on ITS and LSU regions indicated they belong to Meyerozyma caribbica. Yeasts were cultivated under full- and micro-aerobiosis, starting with low or high cell-density inoculum, in synthetic medium or corn hydrolysate containing glucose and/or xylose. Cells were able to assimilate both monosaccharides, albeit by different metabolic routes (fermentative or respiratory). They grew faster in glucose, with lag phases ~ 10 h shorter than in xylose. The hexose exhaustion occurred between 24 and 34 h, while xylose was entirely consumed in the last few hours of cultivation (44-48 h). In batch fermentation in synthetic medium with high cell density, under full-aerobiosis, 18-20 g glucose l

© 2021. The Author(s), under exclusive licence to Springer Nature B.V.

Keywords: Acetic acid; Ethanol; Fermentation; Hydrolysate; Xylitol; Yeast

References

  1. Alves SL Jr, Herberts RA, Hollatz C, Miletti LC, Stambuk BU (2007) Maltose and maltotriose active transport and fermentation by Saccharomyces cerevisiae. J Am Soc Brew Chem 65:99–104. https://doi.org/10.1094/ASBCJ-2007-0411-01 - PubMed
  2. Alves SL Jr, Müller C, Bonatto C, Scapini T, Camargo AF, Fongaro G, Treichel H (2019) Bioprospection of enzymes and microorganisms in insects to improve second-generation ethanol production. Ind Biotechnol 15:336–349. https://doi.org/10.1089/ind.2019.0019 - PubMed
  3. Artifon W, Bonatto C, Bordin ER, Bazoti SF, Dervanoski A, Alves SL Jr, Treichel H (2018) Bioethanol production from hydrolyzed lignocellulosic after detoxification via adsorption with activated carbon and dried air stripping. Front Bioeng Biotechnol 6:107. https://doi.org/10.3389/fbioe.2018.00107 - PubMed
  4. Barrilli ÉT, Tadioto V, Milani LM, Deoti JR, Fogolari O, Müller C, Barros KO, Rosa CA, Santos AA, Stambuk BU, Treichel H, Alves SL Jr (2020) Biochemical analysis of cellobiose catabolism in Candida pseudointermedia strains isolated from rotten wood. Arch Microbiol 202:1729–1739. https://doi.org/10.1007/s00203-020-01884-1 - PubMed
  5. Bautista-Rosales PU, Calderon-Santoyo M, Servín-Villegas R, Ochoa-Álvarez NA, Ragazzo-Sánchez JÁ (2013) Action mechanisms of the yeast Meyerozyma caribbica for the control of the phytopathogen Colletotrichum gloeosporioides in mangoes. Biol Control 65:293–301. https://doi.org/10.1016/j.biocontrol.2013.03.010 - PubMed
  6. Bellissimi E, Van Dijken JP, Pronk JT, Van Maris AJA (2009) Effects of acetic acid on the kinetics of xylose fermentation byan engineered, xylose-isomerasebased Saccharomyces cerevisiae strain. FEMS Yeast Res 9:358–364. https://doi.org/10.1111/j.1567-1364.2009.00487.x - PubMed
  7. Bonatto C, Camargo AF, Scapini T, Stefanski FS, Alves SL, Müller C, Fongaro G, Treichel H (2020a) Biomass to bioenergy research: current and future trends for biofuels. In: Gupta VK, Treichel H, Kuhad RC, Rodriguez-Cout S (eds) Recent developments in bioenergy research, 1st edn. Elsevier, Amsterdam, pp 1–17 - PubMed
  8. Bonatto C, Venturin B, Mayer DA, Bazoti SF, de Oliveira D, Alves SL Jr, Treichel H (2020b) Experimental data and modelling of 2G ethanol production by Wickerhamomyces sp. UFFS-CE-3.1.2. Renew Energ 145:2445–2450. https://doi.org/10.1016/j.renene.2019.08.010 - PubMed
  9. Brito EHS, Fontenelle ROS, Brilhante RSN, Cordeiro RA, Monteiro AJ, Sidrim JJC, Rocha MFG (2009) The anatomical distribution and antimicrobial susceptibility of yeast species isolated from healthy dogs. Vet J 182:320–326. https://doi.org/10.1016/j.tvjl.2008.07.001 - PubMed
  10. Cadete RM, Rosa CA (2018) The yeasts of the genus Spathaspora: potential candidates for second-generation biofuel production. Yeast 35:191–199. https://doi.org/10.1002/yea.3279 - PubMed
  11. Cadete RM, Melo MA, Dussán KJ, Rodrigues RCLB, Silva SS, Zilli JE, Vital MJS, Gomes FCO, Lachance M-A, Rosa CA (2012) Diversity and physiological characterization of D-xylose-fermenting yeasts isolated from the Brazilian Amazonian Forest. PLoS ONE 7:e43135. https://doi.org/10.1371/journal.pone.0043135 - PubMed
  12. Cadete RM, de las Heras AM, Sandström AG, Ferreira C, Gírio F, Gorwa-Grauslund M-F, Rosa CA, Fonseca C (2016) Exploring xylose metabolism in Spathaspora species: XYL1.2 from Spathaspora passalidarum as the key for efficient anaerobic xylose fermentation in metabolic engineered Saccharomyces cerevisiae. Biotechnol Biofuels 9:167. https://doi.org/10.1186/s13068-016-0570-6 - PubMed
  13. Cadete RM, Melo-Cheab MA, Dussan KJ, Rodrigues RCLB, da Silva SS, Gomes FCO, Rosa CA (2017) Production of bioethanol in sugarcane bagasse hemicellulosic hydrolysate by Scheffersomyces parashehatae, Scheffersomyces illinoinensis and Spathaspora arborariae isolated from Brazilian ecosystems. J Appl Microbiol 123:1203–1213. https://doi.org/10.1111/jam.13559 - PubMed
  14. Carneiro CVGC, Silva FCP, Almeida JRM (2019) Xylitol production: identification and comparison of new producing yeasts. Microorganisms 7:484. https://doi.org/10.3390/microorganisms7110484 - PubMed
  15. Casey E, Sedlak M, Ho NWY, Mosier NS (2010) Effect of acetic acid and pH on the cofermentation of glucose and xylose to ethanol by a genetically engineered strain of Saccharomyces cerevisiae. FEMS Yeast Res 10:385–393. https://doi.org/10.1111/j.1567-1364.2010.00623.x - PubMed
  16. Dall Cortivo PR, Hickert LR, Hector R, Ayub MAZ (2018) Fermentation of oat and soybean hull hydrolysates into ethanol and xylitol by recombinant industrial strains of Saccharomyces cerevisiae under diverse oxygen environments. Ind Crop Prod 113:10–18. https://doi.org/10.1016/j.indcrop.2018.01.010 - PubMed
  17. De Marco L, Epis S, Capone A, Martin E, Bozic J, Crotti E, Ricci I, Sassera D (2018) The genomes of four Meyerozyma caribbica isolates and novel insights into the Meyerozyma guilliermondii species complex. G3 Genes Genom Genet 8:755–759. https://doi.org/10.1534/g3.117.300316 - PubMed
  18. Dionísio SR, Santoro DCJ, Bonan CIDG, Soares LB, Biazi LE, Rabelo SC, Ienczak JL (2021) Second-generation ethanol process for integral use of hemicellulosic and cellulosic hydrolysates from diluted sulfuric acid pretreatment of sugarcane bagasse. Fuel 304:121290. https://doi.org/10.1016/j.fuel.2021.121290 - PubMed
  19. Eliodório KP, Cunha GCG, Müller C, Lucaroni AC, Giudici R, Walker GM, Alves SL Jr, Basso TO (2019) Advances in yeast alcoholic fermentations for the production of bioethanol, beer and wine. In: Gadd GM, Sariaslani S (eds) Advances in applied microbiology, vol 109. Elsevier, Amsterdam, pp 61–119 - PubMed
  20. Ferreira D, Nobre A, Silva ML, Faria-Oliveira F, Tulha J, Ferreira C, Lucas C (2013) XYLH encodes a xylose/H - PubMed
  21. Gadagkar SR, Rosenberg MS, Kumar S (2005) Inferring species phylogenies from multiple genes: concatenated sequence tree versus consensus gene tree. J Exp Zool 304B:64–74. https://doi.org/10.1002/jez.b.21026 - PubMed
  22. Guamán-Burneo MC, Dussán KJ, Cadete RM, Cheab MAM, Portero P, Carvajal-Barriga EJ, da Silva SS, Rosa CA (2015) Xylitol production by yeasts isolated from rotting wood in the Galápagos Islands, Ecuador, and description of Cyberlindnera galapagoensis f.a., sp. nov. Antonie Van Leeuwenhoek 108:919–931. https://doi.org/10.1007/s10482-015-0546-8 - PubMed
  23. Hahn-Hägerdal B, Karhumaa K, Larsson CU, Gorwa-Grauslund M, Görgens J, van Zyl WH (2005) Role of cultivation media in the development of yeast strains for large scale industrial use. Microb Cell Fact 4:31. https://doi.org/10.1186/1475-2859-4-31 - PubMed
  24. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucl Acids Symp Ser 41:95–98 - PubMed
  25. Jan FG, Hamayun M, Hussain A, Iqbal A, Jan G, Khan SA, Khan H, Lee I-J (2019) A promising growth promoting Meyerozyma caribbica from Solanum xanthocarpum alleviated stress in maize plants. Biosc Rep. https://doi.org/10.1042/BSR20190290 - PubMed
  26. Jönsson LJ, Martín C (2016) Pretreatment of lignocellulose: formation of inhibitory by-products and strategies for minimizing their effects. Bioresour Technol 199:103–112. https://doi.org/10.1016/j.biortech.2015.10.009 - PubMed
  27. Khunnamwong P, Jindamorakot S, Limtong S (2018) Endophytic yeast diversity in leaf tissue of rice, corn and sugarcane cultivated in Thailand assessed by a culture-dependent approach. Fungal Biol 122:785–799. https://doi.org/10.1016/j.funbio.2018.04.006 - PubMed
  28. Kim J-S, Baek J-H, Park N-H, Kim C (2015) Complete genome sequence of halophilic yeast Meyerozyma caribbica MG20W isolated from rhizosphere soil. Genome Announc 3:e00127-e215. https://doi.org/10.1128/genomeA.00127-15 - PubMed
  29. Leong SL, Niba AT, Ny S, Olstorpe M (2012) Microbial populations during maize storage in Cameroon. Afr J Biotechnol 11:8692–8697. https://doi.org/10.5897/AJB12.108 - PubMed
  30. Letunic I, Bork P (2021) Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res 49:W293–W296. https://doi.org/10.1093/nar/gkab301 - PubMed
  31. Lopes ML, Paulillo SCL, Godoy A, Cherubin RA, Lorenzi MS, Giometti FHC, Bernardino CD, Amorim Neto HB, Amorim HV (2016) Ethanol production in Brazil: a bridge between science and industry. Braz J Microbiol 47:64–76. https://doi.org/10.1016/j.bjm.2016.10.003 - PubMed
  32. Martínez-Nieto P, Vanegas-Hoyos M, Zapata-Pineda M, Robles-Camargo J (2013) Hydrolysis of Eicchornia crassipes and Egeria densa for ethanol production by yeasts isolated from Colombian lake Fúquene. Int J Environ Ecol Eng 7:59–68. https://doi.org/10.5281/zenodo.1088798 - PubMed
  33. Moremi ME, Van Rensburg ELJ, La Grange DC (2020) The improvement of bioethanol production by pentose-fermenting yeasts isolated from herbal preparations, the gut of dung beetles, and marula wine. Int J Microbiol 2020:5670936. https://doi.org/10.1155/2020/5670936 - PubMed
  34. Nagarajan A, Thulasinathan B, Arivalagan P, Alagarsamy A, Muthuramalingam JB, Thangarasu SD, Thangavel K (2021) Particle size influence on the composition of sugars in corncob hemicellulose hydrolysate for xylose fermentation by Meyerozyma caribbica. Bioresour Technol 340:125677. https://doi.org/10.1016/j.biortech.2021.125677 - PubMed
  35. Romi W, Keisam S, Ahmed G, Jeyaram K (2014) Reliable differentiation of Meyerozyma guilliermondii from Meyerozyma caribbica by internal transcribed spacer restriction fingerprinting. BMC Microbiol 14:52. https://doi.org/10.1186/1471-2180-14-52 - PubMed
  36. Saloheimo A, Rauta J, Stasyk OV, Sibirny AA, Penttilä M, Ruohonen L (2007) Xylose transport studies with xylose-utilizing Saccharomyces cerevisiae strains expressing heterologous and homologous permeases. Appl Microbiol Biotechnol 74:1041–1052. https://doi.org/10.1007/s00253-006-0747-1 - PubMed
  37. Santos RO, Cadete RM, Badotti F, Mouro A, Wallheim DO, Gomes FC, Stambuk BU, Lachance MA, Rosa CA (2011) Candida queiroziae sp. nov., a cellobiose-fermenting yeast species isolated from rotting wood in Atlantic rain forest. Antonie Van Leeuwenhoek 99:635–642. https://doi.org/10.1007/s10482-010-9536-z - PubMed
  38. Santos RM, Nogueira FCS, Brasil AA, Carvalho PC, Leprevost FV, Domont GB, Eleutherio ECA (2017) Quantitative proteomic analysis of the Saccharomyces cerevisiae industrial strains CAT-1 and PE-2. J Proteomics 151:114–121. https://doi.org/10.1016/j.jprot.2016.08.020 - PubMed
  39. Shin M, Kim J, Ye S, Kim S, Jeong D, Lee DY, Kim JN, Jin Y-S, Kim KH, Kim SR (2019) Comparative global metabolite profiling of xylose-fermenting Saccharomyces cerevisiae SR8 and Scheffersomyces stipitis. Appl Microbiol Biotechnol 103:5435–5446. https://doi.org/10.1007/s00253-019-09829-5 - PubMed
  40. Stambuk BU, Eleutherio ECA, Florez-Pardo LM, Souto-Maior AM, Bom EPS (2008) Brazilian potential for biomass ethanol: challenge of using hexose and pentose co-fermenting yeast strains. J Sci Ind Res 67:918–926 - PubMed
  41. Suh S-O, Houseknecht JL, Gujjari P, Zhou JJ (2013) Scheffersomyces parashehatae f.a., sp. nov., Scheffersomyces xylosifermentans f.a., sp. nov., Candida broadrunensis sp. nov. and Candida manassasensis sp. nov., novel yeasts associated with wood-ingesting insects, and their ecological and biofuel implications. Int J Syst Evol Microbiol 63:4330–4339. https://doi.org/10.1099/ijs.0.053009-0 - PubMed
  42. Sukpipat W, Komeda H, Prasertsan P, Asano Y (2017) Purification and characterization of xylitol dehydrogenase with L-arabitol dehydrogenase activity from the newly isolated pentose-fermenting yeast Meyerozyma caribbica 5XY2. J Biosci Bioeng 123:20–27. https://doi.org/10.1016/j.jbiosc.2016.07.011 - PubMed
  43. Tamura K, Stecher G, Kumar S (2021) MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol 38:3022–3027. https://doi.org/10.1093/molbev/msab120 - PubMed
  44. Thanh VN, Van Dyk MS, Wingfield MJ (2002) Debaryomyces mycophilus sp. nov., a siderophore-dependent yeast isolated from woodlice. FEMS Yeast Res 2:415–427. https://doi.org/10.1016/S1567-1356(02)00132-0 - PubMed
  45. Trichez D, Steindorff AS, Soares CEVF, Formighieri EF, Almeida JRM (2019) Physiological and comparative genomic analysis of new isolated yeasts Spathaspora sp. JA1 and Meyerozyma caribbica JA9 reveal insights into xylitol production. FEMS Yeast Res 19:foz034. https://doi.org/10.1093/femsyr/foz034 - PubMed
  46. Urbina H, Blackwell M (2012) Multilocus phylogenetic study of the Scheffersomyces yeast clade and characterization of the N-terminal region of xylose |reductase gene. PLoS ONE 7:e39128. https://doi.org/10.1371/journal.pone.0039128 - PubMed
  47. Urbina H, Schuster J, Blackwell M (2013) The gut of Guatemalan passalid beetles: a habitat colonized by cellobiose- and xylose-fermenting yeasts. Fungal Ecol 6:339–355. https://doi.org/10.1016/j.funeco.2013.06.005 - PubMed
  48. Varize CS, Cadete RM, Lopes LD, Christofoleti-Furlan RM, Lachance M-A, Rosa CA, Basso LC (2018) Spathaspora piracicabensis f. a., sp. nov., a D-xylose- fermenting yeast species isolated from rotting wood in Brazil. Antonie Van Leeuwenhoek 111:525–531. https://doi.org/10.1007/s10482-017-0974-8 - PubMed
  49. Vaz ABM, Rosa LH, Vieira MLA, de Garcia V, Brandão LR, Teixeira LCRS, Moliné M, Libkind D, van Broock M, Rosa CA (2011) The diversity, extracellular enzymatic activities and photoprotective compounds of yeasts isolated in Antarctica. Braz J Microbiol 42:937–947. https://doi.org/10.1590/S1517-83822011000300012 - PubMed
  50. Weusthuis RA, Visser W, Pronk JT, Scheffers WA, van Dijken JP (1994) Effects of oxygen limitation on sugar metabolism in yeasts: a continuous-culture study of the Kluyver effect. Microbiology 140:703–715. https://doi.org/10.1099/00221287-140-4-703 - PubMed
  51. White TJ, Bruns TD, Lee SB, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M, Gelfand DH, Shinsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego, pp 315–322 - PubMed
  52. Yurkov AM, Dlauchy D, Péter G (2017) Meyerozyma amylolytica sp. nov. from temperate deciduous trees and the transfer of five Candida species to the genus Meyerozyma. Int J Syst Evol Microbiol 67:3977–3981. https://doi.org/10.1099/ijsem.0.002232 - PubMed
  53. Zaky AS, French CE, Tucker GA, Du C (2020) Improving the productivity of bioethanol production using marine yeast and seawater-based media. Biomass Bioenerg 139:105615. https://doi.org/10.1016/j.biombioe.2020.105615 - PubMed

Publication Types

Grant support