Display options
Share it on

PLoS Negl Trop Dis. 2021 Dec 22;15(12):e0010063. doi: 10.1371/journal.pntd.0010063. eCollection 2021 Dec.

Treponema pallidum genome sequencing from six continents reveals variability in vaccine candidate genes and dominance of Nichols clade strains in Madagascar.

PLoS neglected tropical diseases

Nicole A P Lieberman, Michelle J Lin, Hong Xie, Lasata Shrestha, Tien Nguyen, Meei-Li Huang, Austin M Haynes, Emily Romeis, Qian-Qiu Wang, Rui-Li Zhang, Cai-Xia Kou, Giulia Ciccarese, Ivano Dal Conte, Marco Cusini, Francesco Drago, Shu-Ichi Nakayama, Kenichi Lee, Makoto Ohnishi, Kelika A Konda, Silver K Vargas, Maria Eguiluz, Carlos F Caceres, Jeffrey D Klausner, Oriol Mitjà, Anne Rompalo, Fiona Mulcahy, Edward W Hook, Sheila A Lukehart, Amanda M Casto, Pavitra Roychoudhury, Frank DiMaio, Lorenzo Giacani, Alexander L Greninger

Affiliations

  1. Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States of America.
  2. Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, United States of America.
  3. Institute of Dermatology, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China.
  4. National Center for STD Control, China Centers for Disease Control and Prevention, Nanjing, China.
  5. Department of Dermatology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.
  6. Health Sciences Department, Section of Dermatology, San Martino University Hospital, Genoa, Italy.
  7. STI Clinic, Infectious Diseases Unit, University of Turin, Turin, Italy.
  8. Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy.
  9. Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan.
  10. Unit of Health, Sexuality and Human Development and Laboratory of Sexual Health, Universidad Peruana Cayetano-Heredia, Lima, Peru.
  11. Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America.
  12. Fight Aids and Infectious Diseases Foundation, Hospital Germans Trias i Pujol, Barcelona, Spain.
  13. Lihir Medical Centre-International SOS, Newcrest Mining, Lihir Island, Papua New Guinea.
  14. Department of Infectious Diseases, Johns Hopkins Medical Institutions, Baltimore, Maryland, United States of America.
  15. Department of Genito Urinary Medicine and Infectious Diseases, St James's Hospital, Dublin, Ireland.
  16. Department of Medicine, University of Alabama, Birmingham, Birmingham, Alabama, United States of America.
  17. Department of Global Health, University of Washington, Seattle, Washington, United States of America.
  18. Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America.
  19. Department of Biochemistry, University of Washington, Seattle, Washington, United States of America.

PMID: 34936652 PMCID: PMC8735616 DOI: 10.1371/journal.pntd.0010063

Abstract

In spite of its immutable susceptibility to penicillin, Treponema pallidum (T. pallidum) subsp. pallidum continues to cause millions of cases of syphilis each year worldwide, resulting in significant morbidity and mortality and underscoring the urgency of developing an effective vaccine to curtail the spread of the infection. Several technical challenges, including absence of an in vitro culture system until very recently, have hampered efforts to catalog the diversity of strains collected worldwide. Here, we provide near-complete genomes from 196 T. pallidum strains-including 191 T. pallidum subsp. pallidum-sequenced directly from patient samples collected from 8 countries and 6 continents. Maximum likelihood phylogeny revealed that samples from most sites were predominantly SS14 clade. However, 99% (84/85) of the samples from Madagascar formed two of the five distinct Nichols subclades. Although recombination was uncommon in the evolution of modern circulating strains, we found multiple putative recombination events between T. pallidum subsp. pallidum and subsp. endemicum, shaping the genomes of several subclades. Temporal analysis dated the most recent common ancestor of Nichols and SS14 clades to 1717 (95% HPD: 1543-1869), in agreement with other recent studies. Rates of SNP accumulation varied significantly among subclades, particularly among different Nichols subclades, and was associated in the Nichols A subclade with a C394F substitution in TP0380, a ERCC3-like DNA repair helicase. Our data highlight the role played by variation in genes encoding putative surface-exposed outer membrane proteins in defining separate lineages, and provide a critical resource for the design of broadly protective syphilis vaccines targeting surface antigens.

Conflict of interest statement

The authors have declared that no competing interests exist.

References

  1. PLoS Comput Biol. 2019 Apr 8;15(4):e1006650 - PubMed
  2. PeerJ. 2019 Jan 9;6:e6182 - PubMed
  3. Curr Top Microbiol Immunol. 2018;415:1-38 - PubMed
  4. Nat Methods. 2012 Mar 04;9(4):357-9 - PubMed
  5. PLoS Negl Trop Dis. 2021 Jan 26;15(1):e0008812 - PubMed
  6. Sex Transm Dis. 2004 May;31(5):317-21 - PubMed
  7. PLoS Negl Trop Dis. 2017 Sep 8;11(9):e0005894 - PubMed
  8. Mol Microbiol. 1995 Jun;16(6):1067-73 - PubMed
  9. Antimicrob Agents Chemother. 2000 Mar;44(3):806-7 - PubMed
  10. mSphere. 2018 Jun 13;3(3): - PubMed
  11. Sex Transm Dis. 2012 Dec;39(12):954-8 - PubMed
  12. Bioinformatics. 2009 Jul 15;25(14):1754-60 - PubMed
  13. Sci Rep. 2021 Feb 4;11(1):3154 - PubMed
  14. Curr Biol. 2020 Oct 5;30(19):3788-3803.e10 - PubMed
  15. Am J Trop Med Hyg. 2015 Oct;93(4):678-83 - PubMed
  16. PLoS Negl Trop Dis. 2015 Mar 20;9(3):e0003662 - PubMed
  17. J Mol Biol. 2018 Jul 20;430(15):2237-2243 - PubMed
  18. BMC Struct Biol. 2018 May 16;18(1):7 - PubMed
  19. PLoS One. 2019 Feb 27;14(2):e0211720 - PubMed
  20. PLoS Negl Trop Dis. 2019 May 9;13(5):e0007401 - PubMed
  21. PLoS One. 2018 Aug 21;13(8):e0202619 - PubMed
  22. Mol Biol Evol. 2013 Apr;30(4):772-80 - PubMed
  23. Emerg Infect Dis. 2019 Aug;25(8):1581-1583 - PubMed
  24. Mol Microbiol. 2011 Jun;80(6):1496-515 - PubMed
  25. Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W244-8 - PubMed
  26. Infect Immun. 2010 Jun;78(6):2631-43 - PubMed
  27. J Clin Microbiol. 2006 Mar;44(3):888-91 - PubMed
  28. Bioinformatics. 2014 Aug 1;30(15):2114-20 - PubMed
  29. Sex Transm Dis. 2009 Dec;36(12):775-6 - PubMed
  30. PLoS One. 2011;6(10):e25069 - PubMed
  31. Mol Biol Evol. 2006 Nov;23(11):2220-33 - PubMed
  32. Infect Dis (Auckl). 2019 Oct 16;12:1178633719883282 - PubMed
  33. J Infect Dis. 2006 Dec 15;194(12):1771-3 - PubMed
  34. J Open Source Softw. 2021;6(57): - PubMed
  35. N Engl J Med. 2004 Jul 8;351(2):154-8 - PubMed
  36. Infect Immun. 2015 Jun;83(6):2275-89 - PubMed
  37. Infect Immun. 2008 May;76(5):1848-57 - PubMed
  38. PLoS Comput Biol. 2017 Jun 8;13(6):e1005595 - PubMed
  39. J Bacteriol. 2021 Jul 8;203(15):e0008221 - PubMed
  40. PLoS Pathog. 2021 Jul 6;17(7):e1009612 - PubMed
  41. Front Microbiol. 2019 Jul 31;10:1691 - PubMed
  42. Clin Microbiol Infect. 2018 Nov;24(11):1210.e1-1210.e5 - PubMed
  43. J Immunol. 2010 Apr 1;184(7):3822-9 - PubMed
  44. PLoS One. 2008 May 28;3(5):e2292 - PubMed
  45. Microbes Infect. 2007 Sep;9(11):1267-75 - PubMed
  46. Nat Microbiol. 2016 Oct 17;2:16190 - PubMed
  47. J Bacteriol. 2015 Jun;197(11):1906-20 - PubMed
  48. Nucleic Acids Res. 2017 Jul 3;45(W1):W24-W29 - PubMed
  49. PLoS Negl Trop Dis. 2012;6(9):e1832 - PubMed
  50. Nat Biotechnol. 2019 Apr;37(4):420-423 - PubMed
  51. mBio. 2018 Jun 12;9(3): - PubMed
  52. Infect Immun. 2000 Mar;68(3):1633-48 - PubMed
  53. PLoS Negl Trop Dis. 2017 Mar 6;11(3):e0005434 - PubMed
  54. J Infect Dis. 2000 Apr;181(4):1401-13 - PubMed
  55. Nat Commun. 2019 Jul 22;10(1):3255 - PubMed
  56. J Clin Microbiol. 2021 Sep 20;59(10):e0238520 - PubMed
  57. J Bacteriol. 1989 Sep;171(9):5005-11 - PubMed
  58. PLoS Med. 2017 Dec 27;14(12):e1002473 - PubMed
  59. Mol Biol Evol. 2020 Feb 1;37(2):599-603 - PubMed
  60. J Infect Dis. 2010 Jun 1;201(11):1729-35 - PubMed
  61. J Infect Dis. 2010 Nov 1;202(9):1380-8 - PubMed
  62. Mol Biol Evol. 2015 Jan;32(1):268-74 - PubMed
  63. Virus Evol. 2016 Apr 09;2(1):vew007 - PubMed
  64. Structure. 2019 May 7;27(5):764-775.e3 - PubMed
  65. PLoS One. 2014 Nov 19;9(11):e112963 - PubMed
  66. Nat Microbiol. 2016 Dec 05;2:16245 - PubMed
  67. Bioinformatics. 2009 Aug 15;25(16):2078-9 - PubMed
  68. Curr Epidemiol Rep. 2018 Mar;5(1):24-38 - PubMed
  69. Infect Immun. 2014 Dec;82(12):4959-67 - PubMed
  70. mBio. 2020 Oct 27;11(5): - PubMed
  71. Curr Protoc Bioinformatics. 2020 Dec;72(1):e108 - PubMed
  72. PLoS Negl Trop Dis. 2013 Apr 18;7(4):e2172 - PubMed
  73. Structure. 2013 Oct 8;21(10):1735-42 - PubMed
  74. Bioinformatics. 2014 Jul 15;30(14):2068-9 - PubMed
  75. PLoS One. 2018 Jun 1;13(6):e0198622 - PubMed
  76. Hum Vaccin. 2011 Oct;7(10):1083-9 - PubMed
  77. Mol Microbiol. 2004 Jun;52(6):1579-96 - PubMed
  78. mBio. 2018 Jun 26;9(3): - PubMed
  79. PLoS Negl Trop Dis. 2013 May 16;7(5):e2222 - PubMed
  80. Nucleic Acids Res. 2015 Feb 18;43(3):e15 - PubMed

Publication Types

Grant support