Display options
Share it on

J Extracell Vesicles. 2022 Jan;11(1):e12176. doi: 10.1002/jev2.12176.

Impact on NK cell functions of acute versus chronic exposure to extracellular vesicle-associated MICA: Dual role in cancer immunosurveillance.

Journal of extracellular vesicles

Elisabetta Vulpis, Luisa Loconte, Agnese Peri, Rosa Molfetta, Giulio Caracciolo, Laura Masuelli, Luana Tomaipitinca, Giovanna Peruzzi, Sara Petillo, Maria Teresa Petrucci, Francesca Fazio, Lucilla Simonelli, Cinzia Fionda, Alessandra Soriani, Cristina Cerboni, Marco Cippitelli, Rossella Paolini, Giovanni Bernardini, Gabriella Palmieri, Angela Santoni, Alessandra Zingoni

Affiliations

  1. Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Molecular Medicine, Sapienza' University of Rome, Rome, Italy.
  2. Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy.
  3. Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy.
  4. Center for Life Nano & Neuro Science, Istituto Italiano di Tecnologia, Rome, Italy.
  5. Department of Cellular Biotechnologies and Hematology, Sapienza University of Rome, Italy.
  6. Neuromed I.R.C.C.S.-Istituto Neurologico Mediterraneo, Pozzilli, Italy.

PMID: 34973063 PMCID: PMC8720178 DOI: 10.1002/jev2.12176

Abstract

Natural killer (NK) cells are innate cytotoxic lymphocytes that play a key role in cancer immunosurveillance thanks to their ability to recognize and kill cancer cells. NKG2D is an activating receptor that binds to MIC and ULBP molecules typically induced on damaged, transformed or infected cells. The release of NKG2D ligands (NKG2DLs) in the extracellular milieu through protease-mediated cleavage or by extracellular vesicle (EV) secretion allows cancer cells to evade NKG2D-mediated immunosurveillance. In this work, we investigated the immunomodulatory properties of the NKG2D ligand MICA*008 associated to distinct populations of EVs (i.e., small extracellular vesicles [sEVs] and medium size extracellular vesicles [mEVs]). By using as model a human MICA*008-transfected multiple myeloma (MM) cell line, we found that this ligand is present on both vesicle populations. Interestingly, our findings reveal that NKG2D is specifically involved in the uptake of vesicles expressing its cognate ligand. We provide evidence that MICA*008-expressing sEVs and mEVs are able on one hand to activate NK cells but, following prolonged stimulation induce a sustained NKG2D downmodulation leading to impaired NKG2D-mediated functions. Moreover, our findings show that MICA*008 can be transferred by vesicles to NK cells causing fratricide. Focusing on MM as a clinically and biologically relevant model of tumour-NK cell interactions, we found enrichment of EVs expressing MICA in the bone marrow of a cohort of patients. All together our results suggest that the accumulation of NKG2D ligands associated to vesicles in the tumour microenvironment could favour the suppression of NK cell activity either by NKG2D down-modulation or by fratricide of NK cell dressed with EV-derived NKG2D ligands.

© 2021 The Authors. Journal of Extracellular Vesicles published by Wiley Periodicals, LLC on behalf of the International Society for Extracellular Vesicles.

Keywords: MICA; NKG2D; Natural Killer cells; cancer; extracellular vesicles; immune evasion

References

  1. Science. 2018 Mar 30;359(6383):1537-1542 - PubMed
  2. Oncoimmunology. 2017 Jan 13;6(3):e1279372 - PubMed
  3. J Exp Med. 2016 Feb 8;213(2):225-33 - PubMed
  4. Proc Natl Acad Sci U S A. 2008 Jan 29;105(4):1285-90 - PubMed
  5. PLoS One. 2011 Feb 25;6(2):e16899 - PubMed
  6. J Biol Chem. 2010 Mar 19;285(12):8543-51 - PubMed
  7. Nat Rev Immunol. 2018 Nov;18(11):671-688 - PubMed
  8. J Immunol. 2015 Jul 15;195(2):736-48 - PubMed
  9. Cancer Res. 2010 Jan 15;70(2):481-9 - PubMed
  10. Cancer Immunol Res. 2018 Jul;6(7):776-787 - PubMed
  11. PLoS Biol. 2015 Apr 22;13(4):e1002128 - PubMed
  12. Nat Med. 2000 Jul;6(7):769-75 - PubMed
  13. Oncotarget. 2015 Sep 15;6(27):23609-30 - PubMed
  14. J Natl Cancer Inst. 2015 Nov 22;108(3): - PubMed
  15. Sci Signal. 2015 Oct 27;8(400):ra108 - PubMed
  16. Cancers (Basel). 2020 Jul 13;12(7): - PubMed
  17. Front Immunol. 2018 May 01;9:926 - PubMed
  18. Trends Immunol. 2016 Nov;37(11):790-802 - PubMed
  19. Biochem J. 2013 Sep 1;454(2):295-302 - PubMed
  20. Oncoimmunology. 2016 Aug 19;5(10):e1219827 - PubMed
  21. PLoS One. 2014 Sep 30;9(9):e108925 - PubMed
  22. Oncoimmunology. 2016 Aug 5;5(10):e1218105 - PubMed
  23. Cancer Res. 2007 Sep 15;67(18):8444-9 - PubMed
  24. J Clin Invest. 2004 Aug;114(4):560-8 - PubMed
  25. Eur J Immunol. 2014 Sep;44(9):2761-70 - PubMed
  26. J Hematol Oncol. 2016 Dec 1;9(1):134 - PubMed
  27. FASEB J. 2007 Jun;21(8):1636-46 - PubMed
  28. Int J Hyperthermia. 2015;31(5):498-506 - PubMed
  29. Cytokine Growth Factor Rev. 2020 Feb;51:19-26 - PubMed
  30. Tumour Biol. 2015 Dec;36(12):9739-52 - PubMed
  31. J Immunol. 2008 Jun 1;180(11):7249-58 - PubMed
  32. Sci Rep. 2017 Sep 5;7(1):10445 - PubMed
  33. Leukemia. 2006 Apr;20(4):732-3 - PubMed
  34. Eur J Immunol. 2000 Feb;30(2):644-51 - PubMed
  35. Methods Mol Biol. 2010;612:325-34 - PubMed
  36. Proc Natl Acad Sci U S A. 2013 Jun 4;110(23):9421-6 - PubMed
  37. Nat Rev Mol Cell Biol. 2018 Apr;19(4):213-228 - PubMed
  38. J Immunol. 2002 Jan 15;168(2):671-9 - PubMed
  39. Blood. 2005 Jan 1;105(1):251-8 - PubMed
  40. J Nanobiotechnology. 2018 May 2;16(1):47 - PubMed
  41. J Immunol. 2007 Mar 15;178(6):3418-26 - PubMed
  42. Clin Biochem. 2014 Sep;47(13-14):1286-92 - PubMed
  43. Crit Rev Immunol. 2016;36(6):445-460 - PubMed
  44. Immunity. 2004 Jun;20(6):757-67 - PubMed
  45. Cancers (Basel). 2018 Nov 29;10(12): - PubMed
  46. J Clin Invest. 2016 Apr 1;126(4):1208-15 - PubMed
  47. Cancers (Basel). 2021 Jan 10;13(2): - PubMed
  48. Immunity. 2003 Jan;18(1):41-51 - PubMed
  49. Clin Immunol. 2007 Apr;123(1):114-20 - PubMed
  50. J Immunol. 2005 Jul 15;175(2):720-9 - PubMed
  51. Annu Rev Immunol. 2013;31:413-41 - PubMed
  52. Nat Cell Biol. 2019 Jan;21(1):9-17 - PubMed
  53. Nat Cell Biol. 2008 May;10(5):619-24 - PubMed
  54. Nature. 2015 Jul 9;523(7559):177-82 - PubMed
  55. Tumour Biol. 2016 Apr;37(4):5455-66 - PubMed
  56. Blood. 2003 Aug 15;102(4):1389-96 - PubMed
  57. PLoS One. 2009;4(3):e4942 - PubMed
  58. Cancer Immunol Res. 2018 Jul;6(7):860-869 - PubMed
  59. Front Immunol. 2018 Mar 12;9:476 - PubMed
  60. Annu Rev Cell Dev Biol. 2014;30:255-89 - PubMed
  61. J Immunother. 2020 Jul/Aug;43(6):175-188 - PubMed
  62. J Immunol. 2009 Jun 1;182(11):6933-42 - PubMed
  63. Matrix Biol. 2018 Jan;65:104-118 - PubMed
  64. Nat Rev Cancer. 2016 Jan;16(1):7-19 - PubMed
  65. J Extracell Vesicles. 2019 Aug 1;8(1):1648167 - PubMed
  66. Int J Mol Sci. 2019 Jan 31;20(3): - PubMed
  67. J Immunol. 2009 Jul 1;183(1):340-51 - PubMed
  68. Biosens Bioelectron. 2016 Mar 15;77:518-24 - PubMed
  69. Scand J Immunol. 2013 Aug;78(2):120-9 - PubMed
  70. Blood. 2009 Apr 9;113(15):3503-11 - PubMed
  71. Cancer Immunol Res. 2015 Jun;3(6):575-82 - PubMed

Publication Types