Display options
Share it on

Pflugers Arch. 2022 Jan;474(1):155-176. doi: 10.1007/s00424-021-02649-5. Epub 2021 Dec 30.

Clues and new evidences in arterial hypertension: unmasking the role of the chloride anion.

Pflugers Archiv : European journal of physiology

Nicolás Martín Kouyoumdzian, Gabriel Kim, María Julieta Rudi, Natalia Lucía Rukavina Mikusic, Belisario Enrique Fernández, Marcelo Roberto Choi

Affiliations

  1. Universidad de Buenos Aires, CONICET, Instituto Alberto C. Taquini de Investigaciones en Medicina Traslacional (IATIMET), Buenos Aires, Argentina. [email protected].
  2. Facultad de Farmacia Y Bioquímica, Departamento de Ciencias Biológicas, Cátedra de Anatomía e Histología, Universidad de Buenos Aires, Buenos Aires, Argentina.
  3. Instituto Universitario de Ciencias de La Salud, Fundación H.A. Barceló, Buenos Aires, Argentina.
  4. Universidad de Buenos Aires, CONICET, Instituto Alberto C. Taquini de Investigaciones en Medicina Traslacional (IATIMET), Buenos Aires, Argentina.

PMID: 34966955 DOI: 10.1007/s00424-021-02649-5

Abstract

The present review will focus on the role of chloride anion in cardiovascular disease, with special emphasis in the development of hypertensive disease and vascular inflammation. It is known that acute and chronic overload of sodium chloride increase blood pressure and have pro-inflammatory and pro-fibrotic effects on different target organs, but it is unknown how chloride may influence these processes. Chloride anion is the predominant anion in the extracellular fluid and its intracellular concentration is dynamically regulated. As the queen of the electrolytes, it is of crucial importance to understand the physiological mechanisms that regulate the cellular handling of this anion including the different transporters and cellular chloride channels, which exert a variety of functions, such as regulation of cellular proliferation, differentiation, migration, apoptosis, intracellular pH and cellular redox state. In this article, we will also review the relationship between dietary, serum and intracellular chloride and how these different sources of chloride in the organism are affected in hypertension and their impact on cardiovascular disease. Additionally, we will discuss the approach of potential strategies that affect chloride handling and its potential effect on cardiovascular system, including pharmacological blockade of chloride channels and non-pharmacological interventions by replacing chloride by another anion.

© 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Keywords: Chloride anion; Chloride channels; Hypertension; Pharmacological and non-pharmacological interventions; Target organ damage

References

  1. Alekov AK, Fahlke C (2008) Anion channels: regulation of ClC-3 by an orphan second messenger. Curr Biol 18:R1061-1064. https://doi.org/10.1016/j.cub.2008.09.023 - PubMed
  2. Araki T, Hayashi M, Saruta T (2006) Anion-exchange blocker enhances cytoplasmic vacuole formation and cell death in serum-deprived mouse kidney epithelial cells in mice. Cell Biol Int 30:93–100. https://doi.org/10.1016/j.cellbi.2005.10.020 - PubMed
  3. Askew Page HR, Dalsgaard T, Baldwin SN, Jepps TA, Povstyan O, Olesen SP, Greenwood IA (2019) TMEM16A is implicated in the regulation of coronary flow and is altered in hypertension. Br J Pharmacol 176:1635–1648. https://doi.org/10.1111/bph.14598 - PubMed
  4. Bagul PK, Deepthi N, Sultana R, Banerjee SK (2015) Resveratrol ameliorates cardiac oxidative stress in diabetes through deacetylation of NFkB-p65 and histone 3. J Nutr Biochem 26:1298–1307. https://doi.org/10.1016/j.jnutbio.2015.06.006 - PubMed
  5. Barlassina C, Dal Fiume C, Lanzani C, Manunta P, Guffanti G, Ruello A, Bianchi G, Del Vecchio L, Macciardi F, Cusi D (2007) Common genetic variants and haplotypes in renal CLCNKA gene are associated to salt-sensitive hypertension. Hum Mol Genet 16:1630–1638. https://doi.org/10.1093/hmg/ddm112 - PubMed
  6. Becker HM, Mohebbi N, Perna A, Ganapathy V, Capasso G, Wagner CA (2010) Localization of members of MCT monocarboxylate transporter family Slc16 in the kidney and regulation during metabolic acidosis. Am J Physiol Renal Physiol 299:F141-154. https://doi.org/10.1152/ajprenal.00488.2009 - PubMed
  7. Benz K, Schlote J, Daniel C, Kopp C, Dahlmann A, Schröder A, Cordasic N, Klanke B, Hilgers K, Titze J, Amann K (2018) Mild salt-sensitive hypertension in genetically determined low nephron number is associated with chloride but not sodium retention. Kidney Blood Press Res 43:1–11. https://doi.org/10.1159/000486734 - PubMed
  8. Berend K, van Hulsteijn LH, Gans ROB (2012) Chloride: the queen of electrolytes? Eur J Intern Med 23:203–211. https://doi.org/10.1016/j.ejim.2011.11.013 - PubMed
  9. Bonomini F, Rodella LF, Rezzani R (2015) Metabolic syndrome, aging and involvement of oxidative stress. Aging Dis 6:109–120. https://doi.org/10.14336/AD.2014.0305 - PubMed
  10. Browe DM, Baumgarten CM (2006) EGFR kinase regulates volume-sensitive chloride current elicited by integrin stretch via PI-3K and NADPH oxidase in ventricular myocytes. J Gen Physiol 127:237–251. https://doi.org/10.1085/jgp.200509366 - PubMed
  11. Cao G, Della Penna SL, Kouyoumdzian NM, Choi MR, Gorzalczany S, Fernández BE, Toblli JE, Rosón MI (2017) Immunohistochemical expression of intrarenal renin angiotensin system components in response to tempol in rats fed a high salt diet. World J Nephrol 6:29–40. https://doi.org/10.5527/wjn.v6.i1.29 - PubMed
  12. Casteels R, Kitamura K, Kuriyama H, Suzuki H (1977) The membrane properties of the smooth muscle cells of the rabbit main pulmonary artery. J Physiol 271:41–61. https://doi.org/10.1113/jphysiol.1977.sp011989 - PubMed
  13. Castro L, Freeman BA (2001) Reactive oxygen species in human health and disease. Nutrition 17(161):163–165. https://doi.org/10.1016/s0899-9007(00)00570-0 - PubMed
  14. Cerrudo CS, Cavallero S, Fermepín MR, González GE, Donato M, Kouyoumdzian NM, Gelpi RJ, Hertig CM, Choi MR, Fernández BE (2021) Cardiac natriuretic peptide profiles in chronic hypertension by single or sequentially combined renovascular and DOCA-salt treatments. Front Physiol 12. https://doi.org/10.3389/fphys.2021.651246 - PubMed
  15. Chen LX, Zhu LY, Jacob TJC, Wang LW (2007) Roles of volume-activated Cl- currents and regulatory volume decrease in the cell cycle and proliferation in nasopharyngeal carcinoma cells. Cell Prolif 40:253–267. https://doi.org/10.1111/j.1365-2184.2007.00432.x - PubMed
  16. Cherian OL, Menini A, Boccaccio A (2015) Multiple effects of anthracene-9-carboxylic acid on the TMEM16B/anoctamin2 calcium-activated chloride channel. Biochim Biophys Acta 1848:1005–1013. https://doi.org/10.1016/j.bbamem.2015.01.009 - PubMed
  17. Conti M (2007) Targeting ion channels for new strategies in cancer diagnosis and therapy. Curr Clin Pharmacol 2:135–144. https://doi.org/10.2174/157488407780598153 - PubMed
  18. Cremonini E, Wang Z, Bettaieb A, Adamo AM, Daveri E, Mills DA, Kalanetra KM, Haj FG, Karakas S, Oteiza PI (2018) (-)-Epicatechin protects the intestinal barrier from high fat diet-induced permeabilization: Implications for steatosis and insulin resistance. Redox Biol 14:588–599. https://doi.org/10.1016/j.redox.2017.11.002 - PubMed
  19. Dai Y, Zhang JH (2002) Manipulation of chloride flux affects histamine-induced contraction in rabbit basilar artery. Am J Physiol Heart Circ Physiol 282:H1427-1436. https://doi.org/10.1152/ajpheart.00837.2001 - PubMed
  20. Davis AJ, Forrest AS, Jepps TA, Valencik ML, Wiwchar M, Singer CA, Sones WR, Greenwood IA, Leblanc N (2010) Expression profile and protein translation of TMEM16A in murine smooth muscle. Am J Physiol Cell Physiol 299:C948-959. https://doi.org/10.1152/ajpcell.00018.2010 - PubMed
  21. De Bacquer D, De Backer G, De Buyzere M, Kornitzer M (1998) Is low serum chloride level a risk factor for cardiovascular mortality? J Cardiovasc Risk 5:177–184 - PubMed
  22. Della Penna SL, Cao G, Kouyoumdzian NM, Sarati L, Fellet A, Balaszczuk AM, Choi MR, Zotta E, Gorzalczany S, Pandolfo M, Toblli JE, Rosón MI, Fernández BE (2014) Role of angiotensin II and oxidative stress on renal aquaporins expression in hypernatremic rats. J Physiol Biochem 70:465–478. https://doi.org/10.1007/s13105-014-0324-5 - PubMed
  23. Della Penna SL, Rosón MI, Toblli JE, Fernández BE (2015) Role of angiotensin II and oxidative stress in renal inflammation by hypernatremia: benefits of atrial natriuretic peptide, losartan, and tempol. Free Radic Res 49:383–396. https://doi.org/10.3109/10715762.2015.1006216 - PubMed
  24. Deriy LV, Gomez EA, Jacobson DA, Wang X, Hopson JA, Liu XY, Zhang G, Bindokas VP, Philipson LH, Nelson DJ (2009) The granular chloride channel ClC-3 is permissive for insulin secretion. Cell Metab 10:316–323. https://doi.org/10.1016/j.cmet.2009.08.012 - PubMed
  25. Devuyst O, Guggino WB (2002) Chloride channels in the kidney: lessons learned from knockout animals. Am J Physiol Renal Physiol 283:F1176-1191. https://doi.org/10.1152/ajprenal.00184.2002 - PubMed
  26. Duan D (2009) Phenomics of cardiac chloride channels: the systematic study of chloride channel function in the heart. J Physiol 587:2163–2177. https://doi.org/10.1113/jphysiol.2008.165860 - PubMed
  27. Duan DD (2011) The ClC-3 chloride channels in cardiovascular disease. Acta Pharmacol Sin 32:675–684. https://doi.org/10.1038/aps.2011.30 - PubMed
  28. Duran C, Thompson CH, Xiao Q, Hartzell HC (2010) Chloride channels: often enigmatic, rarely predictable. Annu Rev Physiol 72:95–121. https://doi.org/10.1146/annurev-physiol-021909-135811 - PubMed
  29. Dutzler R, Campbell EB, Cadene M, Chait BT, MacKinnon R (2002) X-ray structure of a ClC chloride channel at 3.0 A reveals the molecular basis of anion selectivity. Nature 415:287–294. https://doi.org/10.1038/415287a - PubMed
  30. Dutzler R, Campbell EB, MacKinnon R (2003) Gating the selectivity filter in ClC chloride channels. Science 300:108–112. https://doi.org/10.1126/science.1082708 - PubMed
  31. Eggermont J (2004) Calcium-activated chloride channels: (un)known, (un)loved? Proc Am Thorac Soc 1:22–27. https://doi.org/10.1513/pats.2306010 - PubMed
  32. Estévez R, Boettger T, Stein V, Birkenhäger R, Otto E, Hildebrandt F, Jentsch TJ (2001) Barttin is a Cl- channel beta-subunit crucial for renal Cl- reabsorption and inner ear K+ secretion. Nature 414:558–561. https://doi.org/10.1038/35107099 - PubMed
  33. Estévez R, Pusch M, Ferrer-Costa C, Orozco M, Jentsch TJ (2004) Functional and structural conservation of CBS domains from CLC chloride channels. J Physiol 557:363–378. https://doi.org/10.1113/jphysiol.2003.058453 - PubMed
  34. Fernández-Salas E, Suh KS, Speransky VV, Bowers WL, Levy JM, Adams T, Pathak KR, Edwards LE, Hayes DD, Cheng C, Steven AC, Weinberg WC, Yuspa SH (2002) mtCLIC/CLIC4, an organellular chloride channel protein, is increased by DNA damage and participates in the apoptotic response to p53. Mol Cell Biol 22:3610–3620. https://doi.org/10.1128/MCB.22.11.3610-3620.2002 - PubMed
  35. Ferreira JP, Girerd N, Duarte K, Coiro S, McMurray JJV, Dargie HJ, Pitt B, Dickstein K, Testani JM, Zannad F, Rossignol P, Investigators H-R (2017) Serum chloride and sodium interplay in patients with acute myocardial infarction and heart failure with reduced ejection fraction: an analysis from the High-Risk Myocardial Infarction Database Initiative. Circ Heart Fail 10:e003500. https://doi.org/10.1161/CIRCHEARTFAILURE.116.003500 - PubMed
  36. Fortuño A, Oliván S, Beloqui O, San José G, Moreno MU, Díez J, Zalba G (2004) Association of increased phagocytic NADPH oxidase-dependent superoxide production with diminished nitric oxide generation in essential hypertension. J Hypertens 22:2169–2175. https://doi.org/10.1097/00004872-200411000-00020 - PubMed
  37. Ganapathi SB, Wei S-G, Zaremba A, Lamb FS, Shears SB (2013) Functional regulation of ClC-3 in the migration of vascular smooth muscle cells. Hypertension 61:174–179. https://doi.org/10.1161/HYPERTENSIONAHA.112.194209 - PubMed
  38. Ganry O, Boudet J, Wargon C, Hornych A, Meyer P (1993) Effect of sodium bicarbonate and sodium chloride on arterial blood pressure, plasma renin activity and urinary prostaglandins in healthy volunteers. J Hypertens Suppl 11:S202-203 - PubMed
  39. Garcia DCG, Longden TA (2020) Ion channels in capillary endothelium. Curr Top Membr 85:261–300. https://doi.org/10.1016/bs.ctm.2020.01.005 - PubMed
  40. Gerbino A, De Zio R, Russo D, Milella L, Milano S, Procino G, Pusch M, Svelto M, Carmosino M (2020) Role of PKC in the regulation of the human kidney chloride channel ClC-Ka. Sci Rep 10:10268. https://doi.org/10.1038/s41598-020-67219-8 - PubMed
  41. Gong Y, Yu M, Yang J, Gonzales E, Perez R, Hou M, Tripathi P, Hering-Smith KS, Hamm LL, Hou J (2014) The Cap1-claudin-4 regulatory pathway is important for renal chloride reabsorption and blood pressure regulation. Proc Natl Acad Sci U S A 111:E3766-3774. https://doi.org/10.1073/pnas.1406741111 - PubMed
  42. Grodin JL, Simon J, Hachamovitch R, Wu Y, Jackson G, Halkar M, Starling RC, Testani JM, Tang WHW (2015) Prognostic role of serum chloride levels in acute decompensated heart failure. J Am Coll Cardiol 66:659–666. https://doi.org/10.1016/j.jacc.2015.06.007 - PubMed
  43. Guan Y-Y, Wang G-L, Zhou J-G (2006) The ClC-3 Cl- channel in cell volume regulation, proliferation and apoptosis in vascular smooth muscle cells. Trends Pharmacol Sci 27:290–296. https://doi.org/10.1016/j.tips.2006.04.008 - PubMed
  44. Hartzell C, Putzier I, Arreola J (2005) Calcium-activated chloride channels. Annu Rev Physiol 67:719–758. https://doi.org/10.1146/annurev.physiol.67.032003.154341 - PubMed
  45. Hawkins BJ, Madesh M, Kirkpatrick CJ, Fisher AB (2007) Superoxide flux in endothelial cells via the chloride channel-3 mediates intracellular signaling. Mol Biol Cell 18:2002–2012. https://doi.org/10.1091/mbc.e06-09-0830 - PubMed
  46. He FJ, Marciniak M, Carney C, Markandu ND, Anand V, Fraser WD, Dalton RN, Kaski JC, MacGregor GA (2010) Effects of potassium chloride and potassium bicarbonate on endothelial function, cardiovascular risk factors, and bone turnover in mild hypertensives. Hypertension 55:681–688. https://doi.org/10.1161/HYPERTENSIONAHA.109.147488 - PubMed
  47. He X, Liu C, Chen Y, He J, Dong Y (2018) Risk of cardiovascular mortality associated with serum sodium and chloride in the general population. Can J Cardiol 34:999–1003. https://doi.org/10.1016/j.cjca.2018.03.013 - PubMed
  48. Heinze C, Seniuk A, Sokolov MV, Huebner AK, Klementowicz AE, Szijártó IA, Schleifenbaum J, Vitzthum H, Gollasch M, Ehmke H, Schroeder BC, Hübner CA (2014) Disruption of vascular Ca2+-activated chloride currents lowers blood pressure. J Clin Invest 124:675–686. https://doi.org/10.1172/JCI70025 - PubMed
  49. Hoffmann EK, Lambert IH, Pedersen SF (2009) Physiology of cell volume regulation in vertebrates. Physiol Rev 89:193–277. https://doi.org/10.1152/physrev.00037.2007 - PubMed
  50. Hofmeister LH, Perisic S, Titze J (2015) Tissue sodium storage: evidence for kidney-like extrarenal countercurrent systems? Pflugers Arch 467:551–558. https://doi.org/10.1007/s00424-014-1685-x - PubMed
  51. Hu H, Li D-L, Fan L, Ren J, Wang S-P, Jia B, Liu B-H, Sun L, Yu X-J, Zang W-J (2010) Involvement of volume-sensitive Cl- channels in the proliferation of human subcutaneous pre-adipocytes. Clin Exp Pharmacol Physiol 37:29–34. https://doi.org/10.1111/j.1440-1681.2009.05223.x - PubMed
  52. Huang F, Wong X, Jan LY (2012) International Union of Basic and Clinical Pharmacology. LXXXV: calcium-activated chloride channels. Pharmacol Rev 64:1–15. https://doi.org/10.1124/pr.111.005009 - PubMed
  53. Huang L-Y, He Q, Liang S-J, Su Y-X, Xiong L-X, Wu Q-Q, Wu Q-Y, Tao J, Wang J-P, Tang Y-B, Lv X-F, Liu J, Guan Y-Y, Pang R-P, Zhou J-G (2014) ClC-3 chloride channel/antiporter defect contributes to inflammatory bowel disease in humans and mice. Gut 63:1587–1595. https://doi.org/10.1136/gutjnl-2013-305168 - PubMed
  54. Huang P, Liu J, Di A, Robinson NC, Musch MW, Kaetzel MA, Nelson DJ (2001) Regulation of human CLC-3 channels by multifunctional Ca2+/calmodulin-dependent protein kinase. J Biol Chem 276:20093–20100. https://doi.org/10.1074/jbc.M009376200 - PubMed
  55. Huang Y-Y, Huang X-Q, Zhao L-Y, Sun F-Y, Chen W-L, Du J-Y, Yuan F, Li J, Huang X-L, Liu J, Lv X-F, Guan Y-Y, Chen J-W, Wang G-L (2014) ClC-3 deficiency protects preadipocytes against apoptosis induced by palmitate in vitro and in type 2 diabetes mice. Apoptosis 19:1559–1570. https://doi.org/10.1007/s10495-014-1021-0 - PubMed
  56. Iba H, Shimohata T, Kido J, Hatayama S, Uebanso T, Mawatari K, Takahashi A (2021) Vibrio parahaemolyticus induces inflammation-associated fluid accumulation via activation of the cystic fibrosis transmembrane conductance regulator. J Med Invest 68:59–70. https://doi.org/10.2152/jmi.68.59 - PubMed
  57. Jacques T, Picard N, Miller RL, Riemondy KA, Houillier P, Sohet F, Ramakrishnan SK, Büsst CJ, Jayat M, Cornière N, Hassan H, Aronson PS, Hennings JC, Hübner CA, Nelson RD, Chambrey R, Eladari D (2013) Overexpression of pendrin in intercalated cells produces chloride-sensitive hypertension. J Am Soc Nephrol 24:1104–1113. https://doi.org/10.1681/ASN.2012080787 - PubMed
  58. Jentsch TJ, Neagoe I, Scheel O (2005) CLC chloride channels and transporters. Curr Opin Neurobiol 15:319–325. https://doi.org/10.1016/j.conb.2005.05.002 - PubMed
  59. Jentsch TJ, Pusch M (2018) CLC chloride channels and transporters: structure, function, physiology, and disease. Physiol Rev 98:1493–1590. https://doi.org/10.1152/physrev.00047.2017 - PubMed
  60. Jentsch TJ, Stein V, Weinreich F, Zdebik AA (2002) Molecular structure and physiological function of chloride channels. Physiol Rev 82:503–568. https://doi.org/10.1152/physrev.00029.2001 - PubMed
  61. Kallikazaros IE (2013) Arterial hypertension. Hellenic J Cardiol 54:413–415 - PubMed
  62. Kato Y (2016) Neutrophil myeloperoxidase and its substrates: formation of specific markers and reactive compounds during inflammation. J Clin Biochem Nutr 58:99–104. https://doi.org/10.3164/jcbn.15-104 - PubMed
  63. Kazory A, Ronco C (2020) Emergence of chloride as an overlooked cardiorenal connector in heart failure. Blood Purif 49:219–221. https://doi.org/10.1159/000503774 - PubMed
  64. Kehrer JP (2000) The Haber-Weiss reaction and mechanisms of toxicity. Toxicology 149:43–50. https://doi.org/10.1016/s0300-483x(00)00231-6 - PubMed
  65. Keshari RS, Verma A, Barthwal MK, Dikshit M (2013) Reactive oxygen species-induced activation of ERK and p38 MAPK mediates PMA-induced NETs release from human neutrophils. J Cell Biochem 114:532–540. https://doi.org/10.1002/jcb.24391 - PubMed
  66. Khayyat NH, Zaika O, Tomilin VN, Pyrshev K, Pochynyuk O (2021) Angiotensin II increases activity of the ClC-K2 Cl- channel in collecting duct intercalated cells by stimulating production of reactive oxygen species. J Biol Chem 296:100347. https://doi.org/10.1016/j.jbc.2021.100347 - PubMed
  67. Kieferle S, Fong P, Bens M, Vandewalle A, Jentsch TJ (1994) Two highly homologous members of the ClC chloride channel family in both rat and human kidney. Proc Natl Acad Sci U S A 91:6943–6947. https://doi.org/10.1073/pnas.91.15.6943 - PubMed
  68. Kirchner KA (1992) Increased loop chloride uptake precedes hypertension in Dahl salt-sensitive rats. Am J Physiol 262:R263-268. https://doi.org/10.1152/ajpregu.1992.262.2.R263 - PubMed
  69. Kleene SJ, Gesteland RC (1991) Calcium-activated chloride conductance in frog olfactory cilia. J Neurosci 11:3624–3629 - PubMed
  70. Klöckner U, Isenberg G (1991) Endothelin depolarizes myocytes from porcine coronary and human mesenteric arteries through a Ca-activated chloride current. Pflugers Arch 418:168–175. https://doi.org/10.1007/BF00370467 - PubMed
  71. Konrad M, Vollmer M, Lemmink HH, DEN Heuvel VAN, LPWJ, Jeck N, Vargas-Poussou R, Lakings A, Ruf R, Deschênes G, Antignac C, Guay-Woodford L, Knoers NVAM, Seyberth HW, Feldmann D, Hildebrandt F, (2000) Mutations in the chloride channel gene CLCNKB as a cause of classic Bartter syndrome. J Am Soc Nephrol 11:1449–1459. https://doi.org/10.1681/ASN.V1181449 - PubMed
  72. Koster AK, Reese AL, Kuryshev Y, Wen X, McKiernan KA, Gray EE, Wu C, Huguenard JR, Maduke M, Du Bois J (2020) Development and validation of a potent and specific inhibitor for the CLC-2 chloride channel. Proc Natl Acad Sci U S A 117:32711–32721. https://doi.org/10.1073/pnas.2009977117 - PubMed
  73. Kotchen TA (2005) Contributions of sodium and chloride to NaCl-induced hypertension. Hypertension 45:849–850. https://doi.org/10.1161/01.HYP.0000164629.94634.27 - PubMed
  74. Kotchen TA, Luke RG, Ott CE, Galla JH, Whitescarver S (1983) Effect of chloride on renin and blood pressure responses to sodium chloride. Ann Intern Med 98:817–822. https://doi.org/10.7326/0003-4819-98-5-817 - PubMed
  75. Kouyoumdzian NM, Mikusic NR, Cao G, Choi MR, Penna SD, Fernández BE, Toblli JE, Rosón MI (2016) Adverse effects of tempol on hidrosaline balance in rats with acute sodium overload. Biotech Histochem 91:510–521. https://doi.org/10.1080/10520295.2016.1249029 - PubMed
  76. Kunes J, Zicha J, Jelínek J (2004) The role of chloride in deoxycorticosterone hypertension: selective sodium loading by diet or drinking fluid. Physiol Res 53:149–154 - PubMed
  77. Kurtz TW, Al-Bander HA, Morris RC (1987) “Salt-sensitive” essential hypertension in men. Is the sodium ion alone important? N Engl J Med 317:1043–1048. https://doi.org/10.1056/NEJM198710223171702 - PubMed
  78. Kurtz TW, Morris RC (1985) Dietary chloride as a determinant of disordered calcium metabolism in salt-dependent hypertension. Life Sci 36:921–929. https://doi.org/10.1016/0024-3205(85)90387-x - PubMed
  79. Lachance PA, Nakat Z, Jeong WS (2001) Antioxidants: an integrative approach. Nutrition 17:835–838. https://doi.org/10.1016/s0899-9007(01)00636-0 - PubMed
  80. Lamb FS, Barna TJ (1998) Chloride ion currents contribute functionally to norepinephrine-induced vascular contraction. Am J Physiol 275:H151-160. https://doi.org/10.1152/ajpheart.1998.275.1.H151 - PubMed
  81. Lambert S, Oberwinkler J (2005) Characterization of a proton-activated, outwardly rectifying anion channel. J Physiol 567:191–213. https://doi.org/10.1113/jphysiol.2005.089888 - PubMed
  82. Lei Y, Wang K, Deng L, Chen Y, Nice EC, Huang C (2015) Redox regulation of inflammation: old elements, a new story. Med Res Rev 35:306–340. https://doi.org/10.1002/med.21330 - PubMed
  83. Liantonio A, De Luca A, Pierno S, Didonna MP, Loiodice F, Fracchiolla G, Tortorella P, Antonio L, Bonerba E, Traverso S, Elia L, Picollo A, Pusch M, Camerino DC (2003) Structural requisites of 2-(p-chlorophenoxy)propionic acid analogues for activity on native rat skeletal muscle chloride conductance and on heterologously expressed CLC-1. Br J Pharmacol 139:1255–1264. https://doi.org/10.1038/sj.bjp.0705364 - PubMed
  84. Liantonio A, Pusch M, Picollo A, Guida P, De Luca A, Pierno S, Fracchiolla G, Loiodice F, Tortorella P, Conte Camerino D (2004) Investigations of pharmacologic properties of the renal CLC-K1 chloride channel co-expressed with barttin by the use of 2-(p-Chlorophenoxy)propionic acid derivatives and other structurally unrelated chloride channels blockers. J Am Soc Nephrol 15:13–20. https://doi.org/10.1097/01.asn.0000103226.28798.ea - PubMed
  85. Liguori I, Russo G, Curcio F, Bulli G, Aran L, Della-Morte D, Gargiulo G, Testa G, Cacciatore F, Bonaduce D, Abete P (2018) Oxidative stress, aging, and diseases. Clin Interv Aging 13:757–772. https://doi.org/10.2147/CIA.S158513 - PubMed
  86. Liu A-H, Cao Y-N, Liu H-T, Zhang W-W, Liu Y, Shi T-W, Jia G-L, Wang X-M (2008) DIDS attenuates staurosporine-induced cardiomyocyte apoptosis by PI3K/Akt signaling pathway: activation of eNOS/NO and inhibition of Bax translocation. Cell Physiol Biochem 22:177–186. https://doi.org/10.1159/000149795 - PubMed
  87. Luft FC, Steinberg H, Ganten U, Meyer D, Gless KH, Lang RE, Fineberg NS, Rascher W, Unger T, Ganten D (1988) Effect of sodium chloride and sodium bicarbonate on blood pressure in stroke-prone spontaneously hypertensive rats. Clin Sci (Lond) 74:577–585. https://doi.org/10.1042/cs0740577 - PubMed
  88. Luft FC, Zemel MB, Sowers JA, Fineberg NS, Weinberger MH (1990) Sodium bicarbonate and sodium chloride: effects on blood pressure and electrolyte homeostasis in normal and hypertensive man. J Hypertens 8:663–670. https://doi.org/10.1097/00004872-199007000-00010 - PubMed
  89. Ma M-M, Jin C-C, Huang X-L, Sun L, Zhou H, Wen X-J, Huang X-Q, Du J-Y, Sun H-S, Ren Z-X, Liu J, Guan Y-Y, Zhao X-M, Wang G-L (2019) Clcn3 deficiency ameliorates high-fat diet-induced obesity and adipose tissue macrophage inflammation in mice. Acta Pharmacol Sin 40:1532–1543. https://doi.org/10.1038/s41401-019-0229-5 - PubMed
  90. Mao J, Chen L, Xu B, Wang L, Li H, Guo J, Li W, Nie S, Jacob TJC, Wang L (2008) Suppression of ClC-3 channel expression reduces migration of nasopharyngeal carcinoma cells. Biochem Pharmacol 75:1706–1716. https://doi.org/10.1016/j.bcp.2008.01.008 - PubMed
  91. Maricq AV, Korenbrot JI (1988) Calcium and calcium-dependent chloride currents generate action potentials in solitary cone photoreceptors. Neuron 1:503–515. https://doi.org/10.1016/0896-6273(88)90181-x - PubMed
  92. Matsuda JJ, Filali MS, Collins MM, Volk KA, Lamb FS (2010) The ClC-3 Cl-/H+ antiporter becomes uncoupled at low extracellular pH. J Biol Chem 285:2569–2579. https://doi.org/10.1074/jbc.M109.018002 - PubMed
  93. Matsuda JJ, Filali MS, Moreland JG, Miller FJ, Lamb FS (2010) Activation of swelling-activated chloride current by tumor necrosis factor-alpha requires ClC-3-dependent endosomal reactive oxygen production. J Biol Chem 285:22864–22873. https://doi.org/10.1074/jbc.M109.099838 - PubMed
  94. Matsuda JJ, Filali MS, Volk KA, Collins MM, Moreland JG, Lamb FS (2008) Overexpression of CLC-3 in HEK293T cells yields novel currents that are pH dependent. Am J Physiol Cell Physiol 294:C251-262. https://doi.org/10.1152/ajpcell.00338.2007 - PubMed
  95. Matsumura Y, Uchida S, Kondo Y, Miyazaki H, Ko SB, Hayama A, Morimoto T, Liu W, Arisawa M, Sasaki S, Marumo F (1999) Overt nephrogenic diabetes insipidus in mice lacking the CLC-K1 chloride channel. Nat Genet 21:95–98. https://doi.org/10.1038/5036 - PubMed
  96. Mayer ML (1985) A calcium-activated chloride current generates the after-depolarization of rat sensory neurones in culture. J Physiol 364:217–239. https://doi.org/10.1113/jphysiol.1985.sp015740 - PubMed
  97. McCallum L, Jeemon P, Hastie CE, Patel RK, Williamson C, Redzuan AM, Dawson J, Sloan W, Muir S, Morrison D, McInnes GT, Freel EM, Walters M, Dominiczak AF, Sattar N, Padmanabhan S (2013) Serum chloride is an independent predictor of mortality in hypertensive patients. Hypertension 62:836–843. https://doi.org/10.1161/HYPERTENSIONAHA.113.01793 - PubMed
  98. McCallum L, Lip S, Padmanabhan S (2015) The hidden hand of chloride in hypertension. Pflugers Arch 467:595–603. https://doi.org/10.1007/s00424-015-1690-8 - PubMed
  99. Miao L, St Clair DK (2009) Regulation of superoxide dismutase genes: implications in disease. Free Radic Biol Med 47:344–356. https://doi.org/10.1016/j.freeradbiomed.2009.05.018 - PubMed
  100. Miller FJ, Filali M, Huss GJ, Stanic B, Chamseddine A, Barna TJ, Lamb FS (2007) Cytokine activation of nuclear factor kappa B in vascular smooth muscle cells requires signaling endosomes containing Nox1 and ClC-3. Circ Res 101:663–671. https://doi.org/10.1161/CIRCRESAHA.107.151076 - PubMed
  101. Minihane AM, Vinoy S, Russell WR, Baka A, Roche HM, Tuohy KM, Teeling JL, Blaak EE, Fenech M, Vauzour D, McArdle HJ, Kremer BHA, Sterkman L, Vafeiadou K, Benedetti MM, Williams CM, Calder PC (2015) Low-grade inflammation, diet composition and health: current research evidence and its translation. Br J Nutr 114:999–1012. https://doi.org/10.1017/S0007114515002093 - PubMed
  102. Moreland JG, Davis AP, Bailey G, Nauseef WM, Lamb FS (2006) Anion channels, including ClC-3, are required for normal neutrophil oxidative function, phagocytosis, and transendothelial migration. J Biol Chem 281:12277–12288. https://doi.org/10.1074/jbc.M511030200 - PubMed
  103. Moreland JG, Davis AP, Matsuda JJ, Hook JS, Bailey G, Nauseef WM, Lamb FS (2007) Endotoxin priming of neutrophils requires NADPH oxidase-generated oxidants and is regulated by the anion transporter ClC-3. J Biol Chem 282:33958–33967. https://doi.org/10.1074/jbc.M705289200 - PubMed
  104. Nakajima K, Oda E, Kanda E (2016) The association of serum sodium and chloride levels with blood pressure and estimated glomerular filtration rate. Blood Press 25:51–57. https://doi.org/10.3109/08037051.2015.1090711 - PubMed
  105. Nelson MT, Conway MA, Knot HJ, Brayden JE (1997) Chloride channel blockers inhibit myogenic tone in rat cerebral arteries. J Physiol 502(Pt 2):259–264. https://doi.org/10.1111/j.1469-7793.1997.259bk.x - PubMed
  106. Nilius B, Droogmans G (2001) Ion channels and their functional role in vascular endothelium. Physiol Rev 81:1415–1459. https://doi.org/10.1152/physrev.2001.81.4.1415 - PubMed
  107. Nilius B, Droogmans G (2003) Amazing chloride channels: an overview. Acta Physiol Scand 177:119–147. https://doi.org/10.1046/j.1365-201X.2003.01060.x - PubMed
  108. Overlack A, Maus B, Ruppert M, Lennarz M, Kolloch R, Stumpe KO (1995) Potassium citrate versus potassium chloride in essential hypertension. Effects on hemodynamic, hormonal and metabolic parameters. Dtsch Med Wochenschr 120:631–635. https://doi.org/10.1055/s-2008-1055388 - PubMed
  109. Passmore JC, Jimenez AE (1990) Separate hemodynamic roles for chloride and sodium in deoxycorticosterone acetate-salt hypertension. Proc Soc Exp Biol Med 194:283–288. https://doi.org/10.3181/00379727-194-43092 - PubMed
  110. Pech V, Kim YH, Weinstein AM, Everett LA, Pham TD, Wall SM (2007) Angiotensin II increases chloride absorption in the cortical collecting duct in mice through a pendrin-dependent mechanism. Am J Physiol Renal Physiol 292:F914-920. https://doi.org/10.1152/ajprenal.00361.2006 - PubMed
  111. Pedersen TH, Macdonald WA, Broch-Lips M, Halldorsdottir O, Baekgaard Nielsen O (2021) Chloride channel inhibition improves neuromuscular function under conditions mimicking neuromuscular disorders. Acta Physiol (Oxf) e13690. https://doi.org/10.1111/apha.13690 - PubMed
  112. Peng K-Y, Liu Y-H, Li Y-W, Yen BL, Yen M-L (2017) Extracellular matrix protein laminin enhances mesenchymal stem cell (MSC) paracrine function through αvβ3/CD61 integrin to reduce cardiomyocyte apoptosis. J Cell Mol Med 21(8):1572–1583. https://doi.org/10.1111/jcmm.13087 - PubMed
  113. Planells-Cases R, Jentsch TJ (2009) Chloride channelopathies. Biochim Biophys Acta 1792:173–189. https://doi.org/10.1016/j.bbadis.2009.02.002 - PubMed
  114. Ponnalagu D, Singh H (2017) Anion channels of mitochondria. Handb Exp Pharmacol 240:71–101. https://doi.org/10.1007/164_2016_39 - PubMed
  115. Poroca DR, Pelis RM, Chappe VM (2017) ClC channels and transporters: structure, physiological functions, and implications in human chloride channelopathies. Front Pharmacol 8:151. https://doi.org/10.3389/fphar.2017.00151 - PubMed
  116. Prince PD, Lanzi CR, Toblli JE, Elesgaray R, Oteiza PI, Fraga CG, Galleano M (2016) Dietary (-)-epicatechin mitigates oxidative stress, NO metabolism alterations, and inflammation in renal cortex from fructose-fed rats. Free Radic Biol Med 90:35–46. https://doi.org/10.1016/j.freeradbiomed.2015.11.009 - PubMed
  117. Prince PD, Santander YA, Gerez EM, Höcht C, Polizio AH, Mayer MA, Taira CA, Fraga CG, Galleano M, Carranza A (2017) Fructose increases corticosterone production in association with NADPH metabolism alterations in rat epididymal white adipose tissue. J Nutr Biochem 46:109–116. https://doi.org/10.1016/j.jnutbio.2017.02.021 - PubMed
  118. Pusch M, Zifarelli G, Murgia AR, Picollo A, Babini E (2006) Channel or transporter? The CLC saga continues. Exp Physiol 91:149–152. https://doi.org/10.1113/expphysiol.2005.031799 - PubMed
  119. Rinke I, Artmann J, Stein V (2010) ClC-2 voltage-gated channels constitute part of the background conductance and assist chloride extrusion. J Neurosci 30:4776–4786. https://doi.org/10.1523/JNEUROSCI.6299-09.2010 - PubMed
  120. Rosón MI, Cao G, Della Penna S, Gorzalczany S, Pandolfo M, Medici C, Fernández BE, Toblli JE (2009) Sodium load combined with low doses of exogenous angiotensin II upregulate intrarenal angiotensin II. Kidney Blood Press Res 32:334–341. https://doi.org/10.1159/000245036 - PubMed
  121. Rosón MI, Cao G, Della Penna S, Gorzalczany S, Pandolfo M, Toblli JE, Fernández BE (2008) Angiotensin II increases intrarenal transforming growth factor-beta1 in rats submitted to sodium overload independently of blood pressure. Hypertens Res 31:707–715. https://doi.org/10.1291/hypres.31.707 - PubMed
  122. Rosón MI, Cavallero S, Della Penna S, Cao G, Gorzalczany S, Pandolfo M, Kuprewicz A, Canessa O, Toblli JE, Fernández BE (2006) Acute sodium overload produces renal tubulointerstitial inflammation in normal rats. Kidney Int 70:1439–1446. https://doi.org/10.1038/sj.ki.5001831 - PubMed
  123. Rosón MI, Della Penna SL, Cao G, Gorzalczany S, Pandolfo M, Cerrudo C, Fernández BE, Toblli JE (2011) High-sodium diet promotes a profibrogenic reaction in normal rat kidneys: effects of Tempol administration. J Nephrol 24:119–127. https://doi.org/10.5301/jn.2010.5824 - PubMed
  124. Rossier BC, Bochud M, Devuyst O (2017) The hypertension pandemic: an evolutionary perspective. Physiology (Bethesda) 32:112–125. https://doi.org/10.1152/physiol.00026.2016 - PubMed
  125. Roth GA, Mensah GA, Johnson CO, Addolorato G, Ammirati E, Baddour LM, Barengo NC, Beaton AZ, Benjamin EJ, Benziger CP, Bonny A, Brauer M, Brodmann M, Cahill TJ, Carapetis J, Catapano AL, Chugh SS, Cooper LT, Coresh J, Criqui M, DeCleene N, Eagle KA, Emmons-Bell S, Feigin VL, Fernández-Solà J, Fowkes G, Gakidou E, Grundy SM, He FJ, Howard G, Hu F, Inker L, Karthikeyan G, Kassebaum N, Koroshetz W, Lavie C, Lloyd-Jones D, Lu HS, Mirijello A, Temesgen AM, Mokdad A, Moran AE, Muntner P, Narula J, Neal B, Ntsekhe M, Moraes de Oliveira G, Otto C, Owolabi M, Pratt M, Rajagopalan S, Reitsma M, Ribeiro ALP, Rigotti N, Rodgers A, Sable C, Shakil S, Sliwa-Hahnle K, Stark B, Sundström J, Timpel P, Tleyjeh IM, Valgimigli M, Vos T, Whelton PK, Yacoub M, Zuhlke L, Murray C, Fuster V, GBD-NHLBI-JACC Global Burden of Cardiovascular Diseases Writing Group (2020) Global burden of cardiovascular diseases and risk factors, 1990–2019: update from the GBD 2019 Study. J Am Coll Cardiol 76:2982–3021. https://doi.org/10.1016/j.jacc.2020.11.010 - PubMed
  126. Rozentsvit A, Vinokur K, Samuel S, Li Y, Gerdes AM, Carrillo-Sepulveda MA (2017) Ellagic acid reduces high glucose-induced vascular oxidative stress through ERK1/2/NOX4 signaling pathway. Cell Physiol Biochem 44:1174–1187. https://doi.org/10.1159/000485448 - PubMed
  127. Ruta L-AM, Dickinson H, Thomas MC, Denton KM, Anderson WP, Kett MM (2010) High-salt diet reveals the hypertensive and renal effects of reduced nephron endowment. Am J Physiol Renal Physiol 298:F1384-1392. https://doi.org/10.1152/ajprenal.00049.2010 - PubMed
  128. Sajadieh A, Binici Z, Mouridsen MR, Nielsen OW, Hansen JF, Haugaard SB (2009) Mild hyponatremia carries a poor prognosis in community subjects. Am J Med 122:679–686. https://doi.org/10.1016/j.amjmed.2008.11.033 - PubMed
  129. Sardini A, Amey JS, Weylandt KH, Nobles M, Valverde MA, Higgins CF (2003) Cell volume regulation and swelling-activated chloride channels. Biochim Biophys Acta 1618:153–162. https://doi.org/10.1016/j.bbamem.2003.10.008 - PubMed
  130. Schlingmann KP, Konrad M, Jeck N, Waldegger P, Reinalter SC, Holder M, Seyberth HW, Waldegger S (2004) Salt wasting and deafness resulting from mutations in two chloride channels. N Engl J Med 350:1314–1319. https://doi.org/10.1056/NEJMoa032843 - PubMed
  131. Schmidlin O, Tanaka M, Bollen AW, Yi S-L, Morris RC (2005) Chloride-dominant salt sensitivity in the stroke-prone spontaneously hypertensive rat. Hypertension 45:867–873. https://doi.org/10.1161/01.HYP.0000164628.46415.66 - PubMed
  132. Schmidlin O, Tanaka M, Sebastian A, Morris RC (2010) Selective chloride loading is pressor in the stroke-prone spontaneously hypertensive rat despite hydrochlorothiazide-induced natriuresis. J Hypertens 28:87–94. https://doi.org/10.1097/HJH.0b013e3283316cfc - PubMed
  133. Scholl U, Hebeisen S, Janssen AGH, Müller-Newen G, Alekov A, Fahlke C (2006) Barttin modulates trafficking and function of ClC-K channels. Proc Natl Acad Sci U S A 103:11411–11416. https://doi.org/10.1073/pnas.0601631103 - PubMed
  134. Schorr U, Distler A, Sharma AM (1996) Effect of sodium chloride- and sodium bicarbonate-rich mineral water on blood pressure and metabolic parameters in elderly normotensive individuals: a randomized double-blind crossover trial. J Hypertens 14:131–135 - PubMed
  135. Sharma AM, Schattenfroh S, Thiede HM, Oelkers W, Distler A (1992) Effects of sodium salts on pressor reactivity in salt-sensitive men. Hypertension 19:541–548. https://doi.org/10.1161/01.hyp.19.6.541 - PubMed
  136. Sharma AM, Schorr U, Oelkers W, Distler A (1993) Effects of sodium salts on plasma renin activity and norepinephrine response to orthostasis in salt-sensitive normotensive subjects. Am J Hypertens 6:780–785. https://doi.org/10.1093/ajh/6.9.780 - PubMed
  137. Shore AC, Markandu ND, MacGregor GA (1988) A randomized crossover study to compare the blood pressure response to sodium loading with and without chloride in patients with essential hypertension. J Hypertens 6:613–617. https://doi.org/10.1097/00004872-198808000-00003 - PubMed
  138. Simon DB, Bindra RS, Mansfield TA, Nelson-Williams C, Mendonca E, Stone R, Schurman S, Nayir A, Alpay H, Bakkaloglu A, Rodriguez-Soriano J, Morales JM, Sanjad SA, Taylor CM, Pilz D, Brem A, Trachtman H, Griswold W, Richard GA, John E, Lifton RP (1997) Mutations in the chloride channel gene, CLCNKB, cause Bartter’s syndrome type III. Nat Genet 17:171–178. https://doi.org/10.1038/ng1097-171 - PubMed
  139. Smith JM, Jones AW (1985) Calcium-dependent fluxes of potassium-42 and chloride-36 during norepinephrine activation of rat aorta. Circ Res 56:507–516. https://doi.org/10.1161/01.res.56.4.507 - PubMed
  140. Soleimani M (2015) The multiple roles of pendrin in the kidney. Nephrol Dial Transplant 30:1257–1266. https://doi.org/10.1093/ndt/gfu307 - PubMed
  141. Takenaka T, Epstein M, Forster H, Landry DW, Iijima K, Goligorsky MS (1992) Attenuation of endothelin effects by a chloride channel inhibitor, indanyloxyacetic acid. Am J Physiol 262:F799-806. https://doi.org/10.1152/ajprenal.1992.262.5.F799 - PubMed
  142. Tanaka M, Schmidlin O, Olson JL, Yi SL, Morris RC (2001) Chloride-sensitive renal microangiopathy in the stroke-prone spontaneously hypertensive rat. Kidney Int 59:1066–1076. https://doi.org/10.1046/j.1523-1755.2001.0590031066.x - PubMed
  143. Testani JM, Hanberg JS, Arroyo JP, Brisco MA, Ter Maaten JM, Wilson FP, Bellumkonda L, Jacoby D, Tang WHW, Parikh CR (2016) Hypochloraemia is strongly and independently associated with mortality in patients with chronic heart failure. Eur J Heart Fail 18:660–668. https://doi.org/10.1002/ejhf.477 - PubMed
  144. Tillman L, Zhang J (2019) Crossing the chloride channel: the current and potential therapeutic value of the neuronal K+-Cl- cotransporter KCC2. Biomed Res Int 2019:8941046. https://doi.org/10.1155/2019/8941046 - PubMed
  145. Tomita Y, Ueno M, Tsuchihashi T, Muratani H, Kobayashi K, Takishita S, Fujishima M (1990) Chloride ion plays an important role in sodium induced volume expansion in normal humans. Am J Hypertens 3:485–487. https://doi.org/10.1093/ajh/3.6.485 - PubMed
  146. Tong Q, Ye C-P, Jones JE, Elmquist JK, Lowell BB (2008) Synaptic release of GABA by AgRP neurons is required for normal regulation of energy balance. Nat Neurosci 11:998–1000. https://doi.org/10.1038/nn.2167 - PubMed
  147. Tsai K-H, Wang W-J, Lin C-W, Pai P, Lai T-Y, Tsai C-Y, Kuo W-W (2012) NADPH oxidase-derived superoxide anion-induced apoptosis is mediated via the JNK-dependent activation of NF-κB in cardiomyocytes exposed to high glucose. J Cell Physiol 227:1347–1357. https://doi.org/10.1002/jcp.22847 - PubMed
  148. Váczi K, Hegyi B, Ruzsnavszky F, Kistamás K, Horváth B, Bányász T, Nánási PP, Szentandrássy N, Magyar J (2015) 9-Anthracene carboxylic acid is more suitable than DIDS for characterization of calcium-activated chloride current during canine ventricular action potential. Naunyn Schmiedebergs Arch Pharmacol 388:87–100. https://doi.org/10.1007/s00210-014-1050-9 - PubMed
  149. Van der Leeuw J, de Borst MH, Kieneker LM, Bakker SJL, Gansevoort RT, Rookmaaker MB (2020) Separating the effects of 24-hour urinary chloride and sodium excretion on blood pressure and risk of hypertension: results from PREVEND. PLoS ONE 15:e0228490. https://doi.org/10.1371/journal.pone.0228490 - PubMed
  150. Van Renterghem C, Lazdunski M (1993) Endothelin and vasopressin activate low conductance chloride channels in aortic smooth muscle cells. Pflugers Arch 425:156–163. https://doi.org/10.1007/BF00374516 - PubMed
  151. Vasconcelos LHC, Souza ILL, Pinheiro LS, Silva BA (2016) Ion channels in obesity: pathophysiology and potential therapeutic targets. Front Pharmacol 7:58. https://doi.org/10.3389/fphar.2016.00058 - PubMed
  152. Volk APD, Heise CK, Hougen JL, Artman CM, Volk KA, Wessels D, Soll DR, Nauseef WM, Lamb FS, Moreland JG (2008) ClC-3 and IClswell are required for normal neutrophil chemotaxis and shape change. J Biol Chem 283:34315–34326. https://doi.org/10.1074/jbc.M803141200 - PubMed
  153. Wahlström BA, Svennerholm B (1974) Potentiation and inhibition of noradrenaline induced contractions of the rat portal vein in anion substituted solutions. Acta Physiol Scand 92:404–411. https://doi.org/10.1111/j.1748-1716.1974.tb05758.x - PubMed
  154. Wall SM, Kim YH, Stanley L, Glapion DM, Everett LA, Green ED, Verlander JW (2004) NaCl restriction upregulates renal Slc26a4 through subcellular redistribution: role in Cl- conservation. Hypertension 44:982–987. https://doi.org/10.1161/01.HYP.0000145863.96091.89 - PubMed
  155. Wang B, Li C, Huai R, Qu Z (2015) Overexpression of ANO1/TMEM16A, an arterial Ca2+-activated Cl- channel, contributes to spontaneous hypertension. J Mol Cell Cardiol 82:22–32. https://doi.org/10.1016/j.yjmcc.2015.02.020 - PubMed
  156. Wang G-L, Wang X-R, Lin M-J, He H, Lan X-J, Guan Y-Y (2002) Deficiency in ClC-3 chloride channels prevents rat aortic smooth muscle cell proliferation. Circ Res 91:E28-32. https://doi.org/10.1161/01.res.0000042062.69653.e4 - PubMed
  157. Wannamethee SG, Shaper AG, Lennon L, Papacosta O, Whincup P (2016) Mild hyponatremia, hypernatremia and incident cardiovascular disease and mortality in older men: a population-based cohort study. Nutr Metab Cardiovasc Dis 26:12–19. https://doi.org/10.1016/j.numecd.2015.07.008 - PubMed
  158. Weber M (2003) The telmisartan programme of research tO show Telmisartan End-organ proteCTION (PROTECTION) programme. J Hypertens Suppl 21:S37-46. https://doi.org/10.1097/00004872-200307006-00007 - PubMed
  159. Wei X, Lu Z, Yang T, Gao P, Chen S, Liu D, Zhu Z (2018) Stimulation of intestinal Cl- secretion through CFTR by caffeine intake in salt-sensitive hypertensive rats. Kidney Blood Press Res 43:439–448. https://doi.org/10.1159/000488256 - PubMed
  160. Weidinger A, Kozlov AV (2015) Biological activities of reactive oxygen and nitrogen species: oxidative stress versus signal transduction. Biomolecules 5:472–484. https://doi.org/10.3390/biom5020472 - PubMed
  161. Whitescarver SA, Holtzclaw BJ, Downs JH, Ott CE, Sowers JR, Kotchen TA (1986) Effect of dietary chloride on salt-sensitive and renin-dependent hypertension. Hypertension 8:56–61. https://doi.org/10.1161/01.hyp.8.1.56 - PubMed
  162. Whitescarver SA, Ott CE, Jackson BA, Guthrie GP, Kotchen TA (1984) Salt-sensitive hypertension: contribution of chloride. Science 223:1430–1432. https://doi.org/10.1126/science.6322303 - PubMed
  163. Wiig H, Schröder A, Neuhofer W, Jantsch J, Kopp C, Karlsen TV, Boschmann M, Goss J, Bry M, Rakova N, Dahlmann A, Brenner S, Tenstad O, Nurmi H, Mervaala E, Wagner H, Beck F-X, Müller DN, Kerjaschki D, Luft FC, Harrison DG, Alitalo K, Titze J (2013) Immune cells control skin lymphatic electrolyte homeostasis and blood pressure. J Clin Invest 123:2803–2815. https://doi.org/10.1172/JCI60113 - PubMed
  164. Wilck N (2021) What’s for dinner? Why a close look at diet and microbiota is worthwhile in experimental hypertension research. Acta Physiol (Oxf) 232:e13704. https://doi.org/10.1111/apha.13704 - PubMed
  165. Wu Q, Boyle MP, Palmiter RD (2009) Loss of GABAergic signaling by AgRP neurons to the parabrachial nucleus leads to starvation. Cell 137:1225–1234. https://doi.org/10.1016/j.cell.2009.04.022 - PubMed
  166. Wyss JM, Liumsiricharoen M, Sripairojthikoon W, Brown D, Gist R, Oparil S (1987) Exacerbation of hypertension by high chloride, moderate sodium diet in the salt-sensitive spontaneously hypertensive rat. Hypertension 9:III171–175. https://doi.org/10.1161/01.hyp.9.6_pt_2.iii171 - PubMed
  167. Xiang N-L, Liu J, Liao Y-J, Huang Y-W, Wu Z, Bai Z-Q, Lin X, Zhang J-H (2016) Abrogating ClC-3 inhibits LPS-induced inflammation via blocking the TLR4/NF-κB pathway. Sci Rep 6:27583. https://doi.org/10.1038/srep27583 - PubMed
  168. Xu B, Mao J, Wang L, Zhu L, Li H, Wang W, Jin X, Zhu J, Chen L (2010) ClC-3 chloride channels are essential for cell proliferation and cell cycle progression in nasopharyngeal carcinoma cells. Acta Biochim Biophys Sin (Shanghai) 42:370–380. https://doi.org/10.1093/abbs/gmq031 - PubMed
  169. Yamauchi T, Doi S, Nakashima A, Doi T, Sohara E, Uchida S, Masaki T (2018) Na+-Cl- cotransporter-mediated chloride uptake contributes to hypertension and renal damage in aldosterone-infused rats. Am J Physiol Renal Physiol 315:F300–F312. https://doi.org/10.1152/ajprenal.00504.2016 - PubMed
  170. Yang H, Huang L-Y, Zeng D-Y, Huang E-W, Liang S-J, Tang Y-B, Su Y-X, Tao J, Shang F, Wu Q-Q, Xiong L-X, Lv X-F, Liu J, Guan Y-Y, Zhou J-G (2012) Decrease of intracellular chloride concentration promotes endothelial cell inflammation by activating nuclear factor-κB pathway. Hypertension 60:1287–1293. https://doi.org/10.1161/HYPERTENSIONAHA.112.198648 - PubMed
  171. Yang YD, Cho H, Koo JY, Tak MH, Cho Y, Shim W-S, Park SP, Lee J, Lee B, Kim B-M, Raouf R, Shin YK, Oh U (2008) TMEM16A confers receptor-activated calcium-dependent chloride conductance. Nature 455:1210–1215. https://doi.org/10.1038/nature07313 - PubMed
  172. Yin Z, Tong Y, Zhu H, Watsky MA (2008) ClC-3 is required for LPA-activated Cl- current activity and fibroblast-to-myofibroblast differentiation. Am J Physiol Cell Physiol 294:C535-542. https://doi.org/10.1152/ajpcell.00291.2007 - PubMed
  173. Yoshikawa M, Uchida S, Yamauchi A, Miyai A, Tanaka Y, Sasaki S, Marumo F (1999) Localization of rat CLC-K2 chloride channel mRNA in the kidney. Am J Physiol 276:F552-558. https://doi.org/10.1152/ajprenal.1999.276.4.F552 - PubMed
  174. Zhou S, Sun W, Zhang Z, Zheng Y (2014) The role of Nrf2-mediated pathway in cardiac remodeling and heart failure. Oxid Med Cell Longev 2014:260429. https://doi.org/10.1155/2014/260429 - PubMed
  175. Zicha J, Kunes J (1994) Haemodynamic changes induced by short- and long-term sodium chloride or sodium bicarbonate intake in deoxycorticosterone-treated rats. Acta Physiol Scand 151:217–223. https://doi.org/10.1111/j.1748-1716.1994.tb09740.x - PubMed
  176. Ziomber A, Machnik A, Dahlmann A, Dietsch P, Beck F-X, Wagner H, Hilgers KF, Luft FC, Eckardt K-U, Titze J (2008) Sodium-, potassium-, chloride-, and bicarbonate-related effects on blood pressure and electrolyte homeostasis in deoxycorticosterone acetate-treated rats. Am J Physiol Renal Physiol 295:F1752-1763. https://doi.org/10.1152/ajprenal.00531.2007 - PubMed

Publication Types

Grant support