Display options
Share it on

Biomol NMR Assign. 2022 Jan 07; doi: 10.1007/s12104-021-10061-4. Epub 2022 Jan 07.

The .

Biomolecular NMR assignments

Courtney N Johnson, Xiaoping Xu, Stephen P Holloway, David S Libich

Affiliations

  1. Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, 8403 Floyd Curl Dr., San Antonio, TX, 78229, USA.
  2. Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, 8403 Floyd Curl Dr., San Antonio, TX, 78229, USA.
  3. Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, 8403 Floyd Curl Dr., San Antonio, TX, 78229, USA. [email protected].
  4. Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, 8403 Floyd Curl Dr., San Antonio, TX, 78229, USA. [email protected].

PMID: 34994941 DOI: 10.1007/s12104-021-10061-4

Abstract

The RNA-binding protein EWS is a multifunctional protein with roles in the regulation of transcription and RNA splicing. It is one of the FET (FUS, EWS and TAF15) family of RNA binding proteins that contain an intrinsically disordered, low-complexity N-terminal domain. The FET family proteins are prone to chromosomal translocations, often fusing their low-complexity domain with a transcription factor derived DNA-binding domain, that are oncogenic drivers in several leukemias and sarcomas. The fusion protein disrupts the normal function of cells through non-canonical DNA binding and alteration of normal transcriptional programs. However, the exact mechanism for how the intrinsically disordered domain contributes to aberrant DNA binding and abnormal transcription is unknown. The purification and

© 2022. The Author(s), under exclusive licence to Springer Nature B.V.

Keywords: EWS-FLI1; Ewing sarcoma; Intrinsically disordered protein; NMR; Oncogenic fusion

References

  1. Boulay G, Sandoval GJ, Riggi N, Iyer S, Buisson R, Naigles B, Awad ME, Rengarajan S, Volorio A, McBride MJ, Broye LC, Zou L, Stamenkovic I, Kadoch C, Rivera MN (2017) Cancer-specific retargeting of BAF complexes by a prion-like domain. Cell 171(1):163-178 e119. https://doi.org/10.1016/j.cell.2017.07.036 - PubMed
  2. Buchan DWA, Jones DT (2019) The PSIPRED protein analysis workbench: 20 years on. Nucleic Acids Res 47(W1):W402–W407. https://doi.org/10.1093/nar/gkz297 - PubMed
  3. Camilloni C, De Simone A, Vranken WF, Vendruscolo M (2012) Determination of secondary structure populations in disordered states of proteins using nuclear magnetic resonance chemical shifts. Biochemistry 51(11):2224–2231. https://doi.org/10.1021/bi3001825 - PubMed
  4. Chong S, Dugast-Darzacq C, Liu Z, Dong P, Dailey GM, Cattoglio C, Heckert A, Banala S, Lavis L, Darzacq X, Tjian R (2018) Imaging dynamic and selective low-complexity domain interactions that control gene transcription. Science. https://doi.org/10.1126/science.aar2555 - PubMed
  5. Cook EC, Usher GA, Showalter SA (2018) The use of (13)C direct-detect NMR to characterize flexible and disordered proteins. Methods Enzymol 611:81–100. https://doi.org/10.1016/bs.mie.2018.08.025 - PubMed
  6. Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6(3):277–293. https://doi.org/10.1007/BF00197809 - PubMed
  7. Delaglio F, Walker GS, Farley KA, Sharma R, Hoch JC, Arbogast LW, Brinson RG, Marino JP (2017) Non-Uniform Sampling for All: More NMR Spectral Quality, Less Measurement Time. Am Pharm Rev 20 (4) - PubMed
  8. Gangwal K, Sankar S, Hollenhorst PC, Kinsey M, Haroldsen SC, Shah AA, Boucher KM, Watkins WS, Jorde LB, Graves BJ, Lessnick SL (2008) Microsatellites as EWS/FLI response elements in Ewing’s sarcoma. Proc Natl Acad Sci U S A 105(29):10149–10154. https://doi.org/10.1073/pnas.0801073105 - PubMed
  9. Gorthi A, Romero JC, Loranc E, Cao L, Lawrence LA, Goodale E, Iniguez AB, Bernard X, Masamsetti VP, Roston S, Lawlor ER, Toretsky JA, Stegmaier K, Lessnick SL, Chen Y, Bishop AJR (2018) EWS-FLI1 increases transcription to cause R-loops and block BRCA1 repair in Ewing sarcoma. Nature 555(7696):387–391. https://doi.org/10.1038/nature25748 - PubMed
  10. Grunewald TGP, Cidre-Aranaz F, Surdez D, Tomazou EM, de Alava E, Kovar H, Sorensen PH, Delattre O, Dirksen U (2018) Ewing Sarcoma. Nat Rev Dis Primers 4(1):5. https://doi.org/10.1038/s41572-018-0003-x - PubMed
  11. Jully B, Vijayalakshmi R, Gopal G, Sabitha K, Rajkumar T (2012) Junction region of EWS-FLI1 fusion protein has a dominant negative effect in Ewing’s sarcoma in vitro. BMC Cancer 12:513. https://doi.org/10.1186/1471-2407-12-513 - PubMed
  12. Kapust RB, Tozser J, Fox JD, Anderson DE, Cherry S, Copeland TD, Waugh DS (2001) Tobacco etch virus protease: mechanism of autolysis and rational design of stable mutants with wild-type catalytic proficiency. Protein Eng 14(12):993–1000. https://doi.org/10.1093/protein/14.12.993 - PubMed
  13. Leemann-Zakaryan RP, Pahlich S, Grossenbacher D, Gehring H (2011) Tyrosine phosphorylation in the C-terminal nuclear localization and retention signal (C-NLS) of the EWS protein. Sarcoma 2011:218483. https://doi.org/10.1155/2011/218483 - PubMed
  14. Machado I, Noguera R, Mateos EA, Calabuig-Farinas S, Lopez FI, Martinez A, Navarro S, Llombart-Bosch A (2011) The many faces of atypical Ewing’s sarcoma. A true entity mimicking sarcomas, carcinomas and lymphomas. Virchows Arch 458(3):281–290. https://doi.org/10.1007/s00428-010-1023-4 - PubMed
  15. Piotto M, Saudek V, Sklenar V (1992) Gradient-tailored excitation for single-quantum NMR spectroscopy of aqueous solutions. J Biomol NMR 2(6):661–665. https://doi.org/10.1007/BF02192855 - PubMed
  16. Riggi N, Knoechel B, Gillespie SM, Rheinbay E, Boulay G, Suva ML, Rossetti NE, Boonseng WE, Oksuz O, Cook EB, Formey A, Patel A, Gymrek M, Thapar V, Deshpande V, Ting DT, Hornicek FJ, Nielsen GP, Stamenkovic I, Aryee MJ, Bernstein BE, Rivera MN (2014) EWS-FLI1 utilizes divergent chromatin remodeling mechanisms to directly activate or repress enhancer elements in Ewing sarcoma. Cancer Cell 26(5):668–681. https://doi.org/10.1016/j.ccell.2014.10.004 - PubMed
  17. Schwartz JC, Cech TR, Parker RR (2015) Biochemical properties and biological functions of FET proteins. Annu Rev Biochem 84:355–379. https://doi.org/10.1146/annurev-biochem-060614-034325 - PubMed
  18. Vranken WF, Boucher W, Stevens TJ, Fogh RH, Pajon A, Llinas M, Ulrich EL, Markley JL, Ionides J, Laue ED (2005) The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins 59(4):687–696. https://doi.org/10.1002/prot.20449 - PubMed
  19. Ying J, Delaglio F, Torchia DA, Bax A (2017) Sparse multidimensional iterative lineshape-enhanced (SMILE) reconstruction of both non-uniformly sampled and conventional NMR data. J Biomol NMR 68(2):101–118. https://doi.org/10.1007/s10858-016-0072-7 - PubMed
  20. Zucman J, Melot T, Desmaze C, Ghysdael J, Plougastel B, Peter M, Zucker JM, Triche TJ, Sheer D, Turc-Carel C et al (1993) Combinatorial generation of variable fusion proteins in the Ewing family of tumours. EMBO J 12(12):4481–4487 - PubMed

Publication Types

Grant support