Display options
Share it on

J Allergy Clin Immunol. 2022 Jan;149(1):302-314. doi: 10.1016/j.jaci.2021.05.031. Epub 2021 Jun 02.

Cushing syndrome and glucocorticoids: T-cell lymphopenia, apoptosis, and rescue by IL-21.

The Journal of allergy and clinical immunology

SuJin Hwang, Christina Tatsi, Hye Sun Kuehn, Julie E Niemela, Jennifer Stoddard, Yan Su, Maya Lodish, Gulbu Uzel, Rosanne Spolski, Warren J Leonard, Steven M Holland, Thomas A Fleisher, Constantine A Stratakis, Sergio D Rosenzweig

Affiliations

  1. Immunology Service, Department of Laboratory Medicine, NIH Clinical Center, National Institutes of Health (NIH), Bethesda, Md.
  2. Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, Md.
  3. Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, Md.
  4. Laboratory of Molecular Immunology, Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, Md.
  5. Immunology Service, Department of Laboratory Medicine, NIH Clinical Center, National Institutes of Health (NIH), Bethesda, Md. Electronic address: [email protected].

PMID: 34089750 PMCID: PMC8636539 DOI: 10.1016/j.jaci.2021.05.031

Abstract

BACKGROUND: Pediatric endogenous Cushing syndrome (eCs) is mainly caused by pituitary corticotropin-producing adenomas, and most glucocorticoid-dependent effects progressively regress upon tumor removal. eCs reproduces long-term, high-dose glucocorticoid therapy, representing a clean, natural, and unbiased model in which to study glucocorticoid bona fide effects on immunity.

OBJECTIVE: We performed extensive immunologic studies in otherwise healthy pediatric patients with eCs before and 6 to 13 months after tumor resection, as well as in in vitro glucocorticoid-treated control cells.

METHODS: Flow cytometry, immunoblotting, enzyme-linked immunosorbent assay, real-time quantitative PCR, and RNA-Seq techniques were used to characterize patients' and in vitro glucocorticoid treated cells.

RESULTS: Reduced thymic output, decreased naive T cells, diminished proliferation, and increased T-cell apoptosis were detected before surgery; all these defects eventually normalized after tumor removal in patients. In vitro studies also showed increased T-cell apoptosis, with correspondingly diminished NF-κB signaling and IL-21 levels. In this setting, IL-21 addition upregulated antiapoptotic BCL2 expression and rescued T-cell apoptosis in a PI3K pathway-dependent manner. Similar and reproducible findings were confirmed in eCs patient cells as well.

CONCLUSIONS: We identified decreased thymic output and lymphocyte proliferation, together with increased apoptosis, as the underlying causes to T-cell lymphopenia in eCs patients. IL-21 was decreased in both natural and in vitro long-term, high-dose glucocorticoid environments, and in vitro addition of IL-21 counteracted the proapoptotic effects of glucocorticoid therapy. Thus, our results suggest that administration of IL-21 in patients receiving long-term, high-dose glucocorticoid therapy may contribute to ameliorate lymphopenia and the complications associated to it.

Published by Elsevier Inc.

Keywords: BCL2; NF-κB; PI3K; cytokines; infections; interleukins

References

  1. J Immunol. 2010 Aug 15;185(4):2350-9 - PubMed
  2. Pituitary. 2014 Oct;17(5):436-40 - PubMed
  3. Nat Protoc. 2006;1(1):363-7 - PubMed
  4. J Clin Endocrinol Metab. 2004 Aug;89(8):3818-20 - PubMed
  5. Aging Cell. 2016 Apr;15(2):349-60 - PubMed
  6. Oncotarget. 2015 Apr 30;6(12):9908-23 - PubMed
  7. Eur J Pediatr. 2016 May;175(5):685-93 - PubMed
  8. J Leukoc Biol. 2007 Sep;82(3):645-56 - PubMed
  9. J Immunol. 2000 Nov 1;165(9):4822-30 - PubMed
  10. Science. 1995 Apr 7;268(5207):100-2 - PubMed
  11. Nat Rev Immunol. 2005 Sep;5(9):688-98 - PubMed
  12. Cytometry. 1998 Jan 1;31(1):1-9 - PubMed
  13. Mol Endocrinol. 2011 Jul;25(7):1075-86 - PubMed
  14. Science. 1995 Oct 13;270(5234):283-6 - PubMed
  15. Clin Immunol. 2008 May;127(2):151-7 - PubMed
  16. J Clin Invest. 2009 Apr;119(4):997-1007 - PubMed
  17. Pharmacol Res. 1992 Feb-Mar;25 Suppl 1:15-6 - PubMed
  18. Acta Neurol Scand. 2009 Apr;119(4):239-45 - PubMed
  19. N Engl J Med. 1997 Apr 10;336(15):1066-71 - PubMed
  20. Blood. 1994 Sep 1;84(5):1415-20 - PubMed
  21. J Clin Oncol. 2008 Apr 20;26(12):2034-9 - PubMed
  22. Endocrinol Metab Clin North Am. 2018 Jun;47(2):451-462 - PubMed
  23. Arthritis Care Res (Hoboken). 2013 Feb;65(2):294-8 - PubMed
  24. J Hematol Oncol. 2017 Jun 14;10(1):120 - PubMed
  25. PLoS One. 2013 Sep 02;8(9):e72801 - PubMed
  26. Pediatr Endocrinol Rev. 2019 Dec;17(2):100-109 - PubMed
  27. J Clin Immunol. 2016 May;36(4):406-12 - PubMed
  28. Curr Drug Targets. 2011 Apr;12(4):556-62 - PubMed
  29. J Immunol. 2019 Sep 1;203(5):1242-1251 - PubMed
  30. J Cancer Res Clin Oncol. 2001 Sep;127(9):545-50 - PubMed
  31. J Biol Chem. 2000 Apr 14;275(15):10761-6 - PubMed
  32. J Exp Med. 1995 Nov 1;182(5):1545-56 - PubMed
  33. Int J Toxicol. 2012 Jul-Aug;31(4):303-16 - PubMed
  34. Cell Immunol. 1999 Apr 10;193(1):36-47 - PubMed
  35. Lancet. 1950 Oct 21;2(6634):483-4 - PubMed
  36. Cell Death Dis. 2015 Dec 03;6:e2006 - PubMed
  37. Cytokine. 2016 Jun;82:33-7 - PubMed
  38. Nature. 1980 Apr 10;284(5756):555-6 - PubMed
  39. Cell Mol Life Sci. 2006 Jan;63(1):60-72 - PubMed
  40. Adv Exp Med Biol. 2015;872:217-33 - PubMed
  41. Pediatr Res. 2018 Feb;83(2):431-437 - PubMed
  42. J Immunol. 2003 Mar 1;170(5):2469-78 - PubMed
  43. Rheumatology (Oxford). 2011 Nov;50(11):1982-90 - PubMed
  44. Blood. 2004 Aug 1;104(3):775-80 - PubMed
  45. J Exp Med. 2019 Feb 4;216(2):384-406 - PubMed
  46. Front Immunol. 2018 Nov 22;9:2738 - PubMed
  47. Annu Rev Immunol. 2000;18:309-45 - PubMed
  48. Clin Exp Immunol. 1992 May;88(2):341-4 - PubMed
  49. J Clin Endocrinol Metab. 1996 May;81(5):1905-11 - PubMed
  50. Cell. 2016 Aug 25;166(5):1269-1281.e19 - PubMed
  51. Science. 1995 Oct 13;270(5234):286-90 - PubMed
  52. J Immunol. 1995 May 1;154(9):4719-25 - PubMed
  53. PLoS Med. 2016 May 24;13(5):e1002024 - PubMed

Publication Types

Grant support