Display options
Share it on

ISME J. 2022 Jan;16(1):159-167. doi: 10.1038/s41396-021-01069-8. Epub 2021 Jul 19.

The rates of global bacterial and archaeal dispersal.

The ISME journal

Stilianos Louca

Affiliations

  1. Department of Biology, University of Oregon, Eugene, OR, USA. [email protected].
  2. Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA. [email protected].

PMID: 34282284 PMCID: PMC8692594 DOI: 10.1038/s41396-021-01069-8

Abstract

The phylogenetic resolution at which microorganisms display geographic endemism, the rates at which they disperse at global scales, and the role of humans on global microbial dispersal are largely unknown. Answering these questions is necessary for interpreting microbial biogeography, ecology, and macroevolution and for predicting the spread of emerging pathogenic strains. To resolve these questions, I analyzed the geographic and evolutionary relationships between 36,795 bacterial and archaeal ("prokaryotic") genomes from ∼7000 locations around the world. I find clear signs of continental-scale endemism, including strong correlations between phylogenetic divergence and geographic distance. However, the phylogenetic scale at which endemism generally occurs is extremely small, and most "species" (defined by an average nucleotide identity ≥ 95%) and even closely related strains (average nucleotide identity ≥ 99.9%) are globally distributed. Human-associated lineages display faster dispersal rates than other terrestrial lineages; the average net distance between any two human-associated cell lineages diverging 50 years ago is roughly 580 km. These results suggest that many previously reported global-scale microbial biogeographical patterns are likely the result of recent or current environmental filtering rather than geographic endemism. For human-associated lineages, estimated transition rates between Europe and North America are particularly high, and much higher than for non-human associated terrestrial lineages, highlighting the role that human movement plays in global microbial dispersal. Dispersal was slowest for hot spring- and terrestrial subsurface-associated lineages, indicating that these environments may act as "isolated islands" of microbial evolution.

© 2021. The Author(s), under exclusive licence to International Society for Microbial Ecology.

References

  1. Proc Natl Acad Sci U S A. 2011 May 10;108(19):7850-4 - PubMed
  2. ISME J. 2010 Nov;4(11):1357-65 - PubMed
  3. Nat Biotechnol. 2018 Nov;36(10):996-1004 - PubMed
  4. Evolution. 1995 Dec;49(6):1081-1094 - PubMed
  5. Proc Natl Acad Sci U S A. 2017 Mar 7;114(10):2651-2656 - PubMed
  6. Mol Biol Evol. 2010 Aug;27(8):1877-85 - PubMed
  7. Nat Ecol Evol. 2018 Sep;2(9):1458-1467 - PubMed
  8. J Mol Evol. 1987;26(1-2):74-86 - PubMed
  9. Nat Commun. 2019 Dec 2;10(1):5477 - PubMed
  10. Bioinformatics. 2018 Mar 15;34(6):1053-1055 - PubMed
  11. Environ Microbiol. 2006 Apr;8(4):755-8 - PubMed
  12. Nat Genet. 2013 Oct;45(10):1176-82 - PubMed
  13. Nat Rev Microbiol. 2007 Apr;5(4):316-23 - PubMed
  14. Nat Commun. 2018 Nov 30;9(1):5114 - PubMed
  15. Nat Microbiol. 2016 Jun 13;1(8):16086 - PubMed
  16. Appl Environ Microbiol. 2006 Aug;72(8):5159-64 - PubMed
  17. Trends Ecol Evol. 2010 Nov;25(11):626-32 - PubMed
  18. PeerJ. 2016 Sep 06;4:e2406 - PubMed
  19. Syst Biol. 2007 Oct;56(5):741-52 - PubMed
  20. Nat Commun. 2011 Jan 25;2:163 - PubMed
  21. Int J Syst Evol Microbiol. 2014 Feb;64(Pt 2):346-351 - PubMed
  22. Proc Natl Acad Sci U S A. 2013 Mar 19;110(12):4651-5 - PubMed
  23. Proc Biol Sci. 2014 Nov 22;281(1795): - PubMed
  24. Appl Environ Microbiol. 2007 Aug;73(15):4751-9 - PubMed
  25. Extremophiles. 2005 Aug;9(4):325-32 - PubMed
  26. Infect Genet Evol. 2012 Mar;12(2):453-60 - PubMed
  27. Biol Direct. 2009 Sep 29;4:35 - PubMed
  28. Science. 2003 Aug 15;301(5635):976-8 - PubMed
  29. Nat Rev Microbiol. 2006 Feb;4(2):102-12 - PubMed
  30. Genome Biol Evol. 2017 Jun 1;9(6):1699-1710 - PubMed
  31. PLoS One. 2011 May 05;6(5):e19561 - PubMed
  32. BMC Bioinformatics. 2008 Mar 26;9:166 - PubMed
  33. Science. 2005 Nov 11;310(5750):960-1 - PubMed
  34. Science. 2016 Sep 16;353(6305):1272-7 - PubMed
  35. Environ Microbiol. 2003 Aug;5(8):650-9 - PubMed
  36. Proc Natl Acad Sci U S A. 2009 May 26;106(21):8605-10 - PubMed
  37. mSystems. 2020 Jan 14;5(1): - PubMed
  38. Genome Res. 2015 Jul;25(7):1043-55 - PubMed
  39. Science. 2012 Apr 27;336(6080):462-6 - PubMed
  40. Microb Ecol. 2012 Nov;64(4):973-85 - PubMed
  41. Curr Opin Virol. 2011 Nov;1(5):423-9 - PubMed
  42. ISME J. 2010 Feb;4(2):191-202 - PubMed
  43. Environ Microbiol. 2015 Mar;17(3):544-6 - PubMed
  44. PLoS One. 2010 Mar 10;5(3):e9490 - PubMed
  45. Cell. 2019 Jan 24;176(3):649-662.e20 - PubMed
  46. Nucleic Acids Res. 2016 Jan 4;44(D1):D67-72 - PubMed
  47. BMC Bioinformatics. 2010 Mar 08;11:119 - PubMed
  48. Front Microbiol. 2020 Jul 14;11:1625 - PubMed
  49. Environ Microbiol. 2008 Jul;10(7):1681-9 - PubMed
  50. Bioinformatics. 2019 Nov 15;: - PubMed
  51. Bioinformatics. 2004 Jan 22;20(2):289-90 - PubMed
  52. Oecologia. 2000 Sep;124(4):506-521 - PubMed
  53. Genome Biol. 2016 Jun 20;17(1):132 - PubMed
  54. Proc Natl Acad Sci U S A. 1998 Jun 9;95(12):6578-83 - PubMed
  55. Proc Natl Acad Sci U S A. 2005 Feb 15;102(7):2567-72 - PubMed
  56. Syst Biol. 2021 Feb 10;70(2):340-359 - PubMed
  57. PLoS Biol. 2019 Feb 4;17(2):e3000106 - PubMed

Publication Types