Display options
Share it on

Proc Natl Acad Sci U S A. 2022 Jan 04;119(1). doi: 10.1073/pnas.2120286118. Epub 2021 Dec 22.

How evolution dismantles and reassembles multienzyme complexes.

Proceedings of the National Academy of Sciences of the United States of America

Andrea Mattevi

Affiliations

  1. Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy [email protected].

PMID: 34996854 DOI: 10.1073/pnas.2120286118

[No abstract available.]

Conflict of interest statement

The author declares no competing interest.

References

  1. Perham R. N.. Swinging arms and swinging domains in multifunctional enzymes: Catalytic machines for multistep reactions. Annu. Rev. Biochem.. 2000;69:961–1004. - PubMed
  2. Guest J. R., Angier S. J., Russell G. C.. Structure, expression, and protein engineering of the pyruvate dehydrogenase complex of Escherichia coli. Ann. N. Y. Acad. Sci.. 1989;573:76–99. - PubMed
  3. Reed L. J.. From lipoic acid to multi-enzyme complexes. Protein Sci.. 1998;7:220–224. - PubMed
  4. Smolle M., Lindsay J. G.. Molecular architecture of the pyruvate dehydrogenase complex: Bridging the gap. Biochem. Soc. Trans.. 2006;34:815–818. - PubMed
  5. Bruch E. M., et al. Actinobacteria challenge the paradigm: A unique protein architecture for a well-known, central metabolic complex. Proc. Natl. Acad. Sci. U.S.A.. 2021;118:e2112107118. - PubMed
  6. Reed L. J., Hackert M. L.. Structure-function relationships in dihydrolipoamide acyltransferases. J. Biol. Chem.. 1990;265:8971–8974. - PubMed
  7. Shaw W. V., Leslie A. G.. Chloramphenicol acetyltransferase. Annu. Rev. Biophys. Biophys. Chem.. 1991;20:363–386. - PubMed
  8. Mattevi A., et al. Atomic structure of the cubic core of the pyruvate dehydrogenase multienzyme complex. Science. 1992;255:1544–1550. - PubMed
  9. Izard T., et al. Principles of quasi-equivalence and Euclidean geometry govern the assembly of cubic and dodecahedral cores of pyruvate dehydrogenase complexes. Proc. Natl. Acad. Sci. U.S.A.. 1999;96:1240–1245. - PubMed
  10. Caspar D. L., Klug A.. Physical principles in the construction of regular viruses. Cold Spring Harb. Symp. Quant. Biol.. 1962;27:1–24. - PubMed
  11. Aevarsson A., Seger K., Turley S., Sokatch J. R., Hol W. G.. Crystal structure of 2-oxoisovalerate and dehydrogenase and the architecture of 2-oxo acid dehydrogenase multienzyme complexes. Nat. Struct. Biol.. 1999;6:785–792. - PubMed
  12. Usuda Y., et al. Molecular cloning of the Corynebacterium glutamicum (‘Brevibacterium lactofermentum’ AJ12036) odhA gene encoding a novel type of 2-oxoglutarate dehydrogenase. Microbiology (Reading). 1996;142:3347–3354. - PubMed
  13. Prajapati S., et al. Structural and functional analyses of the human PDH complex suggest a “division-of-labor” mechanism by local E1 and E3 clusters. Structure. 2019;27:1124–1136.e4. - PubMed
  14. Hezaveh S., Zeng A. P., Jandt U.. Full enzyme complex simulation: Interactions in human pyruvate dehydrogenase complex. J. Chem. Inf. Model.. 2018;58:362–369. - PubMed
  15. Yi J., et al. Effect of substitutions in the thiamin diphosphate-magnesium fold on the activation of the pyruvate dehydrogenase complex from Escherichia coli by cofactors and substrate. J. Biol. Chem.. 1996;271:33192–33200. - PubMed
  16. Zhang S. L., Hu X., Zhang W., Yao H., Tam K. Y.. Development of pyruvate dehydrogenase kinase inhibitors in medicinal chemistry with particular emphasis as anticancer agents. Drug Discov. Today. 2015;20:1112–1119. - PubMed
  17. Hochberg G. K. A., et al. A hydrophobic ratchet entrenches molecular complexes. Nature. 2020;588:503–508. - PubMed
  18. Pareek V., Tian H., Winograd N., Benkovic S. J.. Metabolomics and mass spectrometry imaging reveal channeled de novo purine synthesis in cells. Science. 2020;368:283–290. - PubMed

Publication Types