Display options
Share it on

Nat Commun. 2022 Jan 10;13(1):184. doi: 10.1038/s41467-021-27870-9.

Cooperation in a fluid swarm of fuel-free micro-swimmers.

Nature communications

Matan Yah Ben Zion, Yaelin Caba, Alvin Modin, Paul M Chaikin

Affiliations

  1. Center for Soft Matter Research, Department of Physics, New York University, 726 Broadway Avenue, New York, NY, 10003, USA. [email protected].
  2. UMR Gulliver 7083 CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, 75005, Paris, France. [email protected].
  3. Center for Soft Matter Research, Department of Physics, New York University, 726 Broadway Avenue, New York, NY, 10003, USA.

PMID: 35013335 DOI: 10.1038/s41467-021-27870-9

Abstract

While motile bacteria display rich dynamics in dense colonies, the phoretic nature of artificial micro-swimmers restricts their activity when crowded. Here we introduce a new class of synthetic micro-swimmers that are driven solely by light. By coupling a light absorbing particle to a fluid droplet we produce a colloidal chimera that transforms optical power into propulsive thermo-capillary action. The swimmers' internal drive allows them to operate for a long duration (days) and remain active when crowded, forming a high density fluid phase. We find that above a critical concentration, swimmers form a long lived crowded state that displays internal dynamics. When passive particles are introduced, the dense swimmer phase can re-arrange to spontaneously corral the passive particles. We derive a geometrical, depletion-like condition for corralling by identifying the role the passive particles play in controlling the effective concentration of the micro-swimmers.

© 2022. The Author(s).

References

  1. Hamann, H. Swarm Robotics: A Formal Approach. (Springer International Publishing, 2018). - PubMed
  2. Procaccini, A. et al. Propagating waves in starling, Sturnus vulgaris, flocks under predation. Animal Behav. 82, 759–765 (2011). - PubMed
  3. BBC. Feeding Frenzy, from The Hunt: Hunger at Sea (Oceans, 2015). - PubMed
  4. Harari, Y. N. Sapiens:a brief history of humankind. (Harper, 2015). - PubMed
  5. Costerton, J. W., Stewart, P. S. & Greenberg, E. P. Bacterial biofilms: a common cause of persistent infections. Science 284, 1318–1322 (1999). - PubMed
  6. Saintillan, D. & Shelley, M. J. Instabilities, pattern formation, and mixing in active suspensions. Phys. Fluids 20, 123304 (2008). - PubMed
  7. Secchi, E. et al. Intermittent turbulence in flowing bacterial suspensions. J. R. Soc. Interface 13, 20160175 (2016). - PubMed
  8. Marchetti, C. M. et al. Hydrodynamics of soft active matter. Rev. Mod. Phys. 85, 1143–1189 (2013). - PubMed
  9. Dunkel, J. et al. Fluid dynamics of bacterial turbulence. Phys. Rev. Lett. 110, 228102 (2013). - PubMed
  10. Wensink, H. H. et al. Meso-scale turbulence in living fluids. Proc. Natl Acad. Sci. USA 109, 14308–14313 (2012). - PubMed
  11. Zhang, H. P., Be’er, A., Florin, E. L. & Swinney, H. L. Collective motion and density fluctuations in bacterial colonies. Proc. Natl Acad. Sci. USA 107, 13626–13630 (2010). - PubMed
  12. Dombrowski, C., Cisneros, L., Chatkaew, S., Goldstein, R. E. & Kessler, J. O. Self-concentration and large-scale coherence in bacterial dynamics. Phys. Rev. Lett. 93, 098103 (2004). - PubMed
  13. Xu, H., Dauparas, J., Das, D., Lauga, E. & Wu, Y. Self-organization of swimmers drives long-range fluid transport in bacterial colonies. Nat. Commun. 10, 1–12 (2019). - PubMed
  14. Gompper, G. et al. The 2020 motile active matter roadmap. J. Phys. Condens. Matter 32, 193001 (2020). - PubMed
  15. Van Der Linden, M. N., Alexander, L. C., Aarts, D. G. & Dauchot, O. Interrupted motility induced phase separation in aligning active colloids. Phys. Rev. Lett. 123, 98001 (2019). - PubMed
  16. Geyer, D., Martin, D., Tailleur, J. & Bartolo, D. Freezing a flock: motility-induced phase separation in polar active liquids. Phys. Rev. X 9, 31043 (2019). - PubMed
  17. Bäuerle, T., Fischer, A., Speck, T. & Bechinger, C. Self-organization of active particles by quorum sensing rules. Nat. Commun. 9, 3232 (2018). - PubMed
  18. Yan, J. et al. Reconfiguring active particles by electrostatic imbalance. Nat. Mater. 15, 1095–1099 (2016). - PubMed
  19. Lozano, C., ten Hagen, B., Löwen, H. & Bechinger, C. Phototaxis of synthetic microswimmers in optical landscapes. Nat. Commun. 7, 12828 (2016). - PubMed
  20. Maass, C. C., Krüger, C., Herminghaus, S. & Bahr, C. Swimming droplets. Annu. Rev. Condens. Matter Phys. 7, 171–193 (2016). - PubMed
  21. Izri, Z., van der Linden, M. N., Michelin, S. & Dauchot, O. Self-propulsion of pure water droplets by spontaneous marangoni-stress-driven motion. Phys. Rev. Lett. 113, 248302 (2014). - PubMed
  22. Howse, J. R. et al. Self-motile colloidal particles: from directed propulsion to random walk. Phys. Rev. Lett. 99, 048102 (2007). - PubMed
  23. Palacci, J., Sacanna, S., Steinberg, A. P., Pine, D. J. & Chaikin, P. M. Living crystals of light-activated colloidal surfers. Science 339, 936–940 (2013). - PubMed
  24. Ben Zion, M. Y., Caba, Y., Sha, R., Seeman, N. C. & Chaikin, P. M. Mix and match—a versatile equilibrium approach for hybrid colloidal synthesis. Soft Matter 16, 4358–4365 (2020). - PubMed
  25. Young, B. N., Goldstein, J. S. & Blocks, M. J. The motion of bubbles in a vertical temperature gradient. J. Fluid Mech. 6, 350–356 (1959). - PubMed
  26. Barton, K. D. & Shankar Subramanian, R. The migration of liquid drops in a vertical temperature gradient. J. Colloid Interface Sci. 133, 211–222 (1989). - PubMed
  27. Doi, M. Soft Matter Physics. (Oxford University Press, 2013). - PubMed
  28. de Gennes, P.-G., Brochard-Wyart, F. & Quere, D. Capillarity and Wetting Phenomena (Springer, 2002). - PubMed
  29. Sloutskin, E., Bain, C. D., Ocko, M. & Deutsch, M. Surface freezing of chain molecules at the liquid - liquid and liquid - air interfaces. Faraday Discuss. 129, 339–352 (2005). - PubMed
  30. Baroud, C. N., Delville, J.-p, Gallaire, F. & Wunenburger, R. Thermocapillary valve for droplet production and sorting. Phys. Rev. E 75, 046302 (2007). - PubMed
  31. Robert de Saint Vincent, M. et al. Laser switching and sorting for high speed digital microfluidics. Appl. Phys. Lett. 92, 154105 (2008). - PubMed
  32. Ruckenstein, E. Can phoretic motions be treated as interfacial tension gradient driven phenomena? J. Colloid Interface Sci. 83, 77–81 (1981). - PubMed
  33. Happel, J. & Brenner, H. Low Reynolds Number Hydrodynamics. (Springer, 1983). - PubMed
  34. Tailleur, J. & Cates, M. E. Statistical mechanics of interacting run-and-tumble bacteria. Phys. Rev. Lett. 100, 218103 (2008). - PubMed
  35. Fily, Y. & Marchetti, C. M. Athermal phase separation of self-propelled particles with no alignment. Phys. Rev. Lett. 108, 235702 (2012). - PubMed
  36. Redner, G. S., Hagan, M. F. & Baskaran, A. Structure and dynamics of a phase-separating active colloidal fluid. Phys. Rev. Lett. 110, 055701 (2013). - PubMed
  37. Stenhammar, J., Wittkowski, R., Marenduzzo, D. & Cates, M. E. Activity-induced phase separation and self-assembly in mixtures of active and passive particles. Phys. Rev. Lett. 114, 018301 (2015). - PubMed
  38. Cates, M. E. & Tailleur, J. Motility-induced phase separation. Annu. Rev. Condens. Matter Phys. 6, 219–244 (2015). - PubMed
  39. Solon, A. P. et al. Pressure is not a state function for generic active fluids. Nat. Phys. 11, 673–678 (2015). - PubMed
  40. Jeanneret, R., Pushkin, D. O., Kantsler, V. & Polin, M. Entrainment dominates the interaction of microalgae with micron-sized objects. Nat. Commun. 7, 12518 (2016). - PubMed
  41. Kardar, M. Statistical Physics of Particles. (Cambridge University Press, 2007).. - PubMed
  42. Ray, D., Reichhardt, C. & Reichhardt, C. J. O. Casimir effect in active matter systems. Phys. Rev. E 90, 013019 (2014). - PubMed
  43. Harder, J., Mallory, S. A., Tung, C., Valeriani, C. & Cacciuto, A. The role of particle shape in active depletion. J. Chem. Phys. 141, 194901 (2014). - PubMed
  44. Smallenburg, F. & Löwen, H. Swim pressure on walls with curves and corners. Phys. Rev. E 92, 032304 (2015). - PubMed
  45. Wensink, H. H., Kantsler, V., Goldstein, R. E. & Dunkel, J. Controlling active self-assembly through broken particle-shape symmetry. Phys. Rev. E 89, 010302 (2014). - PubMed
  46. Grosberg, A. Y. U. & Joanny, J. F. Nonequilibrium statistical mechanics of mixtures of particles in contact with different thermostats. Phys. Rev. E 92, 1–10 (2015). - PubMed
  47. Weber, S. N., Weber, C. A. & Frey, E. Binary mixtures of particles with different diffusivities demix. Phys. Rev. Lett. 116, 058301 (2016). - PubMed
  48. Altshuler, E. et al. Symmetry breaking in escaping ants. Am. Natural. 166, 643–649 (2005). - PubMed
  49. Gelblum, A. et al. Ant groups optimally amplify the effect of transiently informed individuals. Nat. Commun. 6, 7729 (2015). - PubMed
  50. Attanasi, A. et al. Information transfer and behavioural inertia in starling flocks. Nat. Phys. 10, 691–696 (2014). - PubMed
  51. Katz, Y., Tunstrom, K., Ioannou, C. C., Huepe, C. & Couzin, I. D. Inferring the structure and dynamics of interactions in schooling fish. Proc. Natl Acad. Sci. USA 108, 18720–18725 (2011). - PubMed
  52. Seeman, N. C. Structural DNA Nanotechnology (Cambridge University Press, 2015). - PubMed
  53. Ben Zion, M. Y. et al. Self-assembled three-dimensional chiral colloidal architecture. Science 358, 633–636 (2017). - PubMed
  54. Zhu, G. et al. Microchemomechanical devices using DNA hybridization. Proc. Natl Acad. Sci. USA 118, e2023508118 (2021). - PubMed
  55. Ben Zion, M. Y., Modin, A., Caba, Y. & Chaikin, P. M. Cooperation in a fluid swarm of fuel-free micro-swimmers. Arxiv http://arxiv.org/abs/2012.15087 (2020). - PubMed
  56. Ben Zion, M. Y., Modin, A., Caba, Y. & Chaikin, P. M. Cooperation in a fluid swarm of fuel-free micro-swimmers. figshare https://doi.org/10.6084/m9.figshare.16559733.v1 (2021). - PubMed

Publication Types

Grant support