Display options
Share it on

Sci Rep. 2022 Jan 07;12(1):298. doi: 10.1038/s41598-021-03831-6.

Inappropriate sinus tachycardia in post-COVID-19 syndrome.

Scientific reports

Júlia Aranyó, Victor Bazan, Gemma Lladós, Maria Jesús Dominguez, Felipe Bisbal, Marta Massanella, Axel Sarrias, Raquel Adeliño, Ariadna Riverola, Roger Paredes, Bonaventura Clotet, Antoni Bayés-Genís, Lourdes Mateu, Roger Villuendas

Affiliations

  1. Cardiology Department, Heart institute, Hospital Universitari Germans Trias I Pujol, Carretera de Canyet s/n, 08916, Badalona, Spain.
  2. Department of Infectious Disease, Hospital Universitari Germans Trias I Pujol, Badalona, Spain.
  3. Emergency Department, Hospital Universitari Germans Trias I Pujol, Badalona, Spain.
  4. AIDS Research Institute (IrsiCaixa), Badalona, Spain.
  5. Centro de Investigación Biomédica en Red Enfermedades Cardiovascualres (CIBERCV), Madrid, Spain.
  6. Autonomous University of Barcelona, Barcelona, Spain.
  7. Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), Madrid, Spain.
  8. Cardiology Department, Heart institute, Hospital Universitari Germans Trias I Pujol, Carretera de Canyet s/n, 08916, Badalona, Spain. [email protected].
  9. Centro de Investigación Biomédica en Red Enfermedades Cardiovascualres (CIBERCV), Madrid, Spain. [email protected].
  10. Autonomous University of Barcelona, Barcelona, Spain. [email protected].

PMID: 34996973 DOI: 10.1038/s41598-021-03831-6

Abstract

Inappropriate sinus tachycardia (IST) is a common observation in patients with post-COVID-19 syndrome (PCS) but has not yet been fully described to date. To investigate the prevalence and the mechanisms underlying IST in a prospective population of PCS patients. Consecutive patients admitted to the PCS Unit between June and December 2020 with a resting sinus rhythm rate ≥ 100 bpm were prospectively enrolled in this study and further examined by an orthostatic test, 2D echocardiography, 24-h ECG monitoring (heart rate variability was a surrogate for cardiac autonomic activity), quality-of-life and exercise capacity testing, and blood sampling. To assess cardiac autonomic function, a 2:1:1 comparative sub-analysis was conducted against both fully recovered patients with previous SARS-CoV-2 infection and individuals without prior SARS-CoV-2 infection. Among 200 PCS patients, 40 (20%) fulfilled the diagnostic criteria for IST (average age of 40.1 ± 10 years, 85% women, 83% mild COVID-19). No underlying structural heart disease, pro-inflammatory state, myocyte injury, or hypoxia were identified. IST was accompanied by a decrease in most heart rate variability parameters, especially those related to cardiovagal tone: pNN50 (cases 3.2 ± 3 vs. recovered 10.5 ± 8 vs. non-infected 17.3 ± 10; p < 0.001) and HF band (246 ± 179 vs. 463 ± 295 vs. 1048 ± 570, respectively; p < 0.001). IST is prevalent condition among PCS patients. Cardiac autonomic nervous system imbalance with decreased parasympathetic activity may explain this phenomenon.

© 2022. The Author(s).

References

  1. Carfì, A., Bernabei, R., Landi, F., Gemelli Against COVID-19 Post-Acute Care Study Group. Persistent symptoms in patients after acute COVID-19. JAMA 324(6), 603–605. https://doi.org/10.1001/jama.2020.12603 (2020). - PubMed
  2. COVID-19 rapid guideline: managing the long-term effects of COVID-19. (National Institute for Health and Care Excellence (UK), London, 2020). - PubMed
  3. Dani, M. et al. Autonomic dysfunction in ‘long COVID’: Rationale, physiology and management strategies. Clin. Med. (Lond.). 21(1), e63–e67. https://doi.org/10.7861/clinmed.2020-0896 (2021). - PubMed
  4. Feigofsky, S. & Fedorowski, A. Defining cardiac dysautonomia—Different types, overlap syndromes; case-based presentations. J. Atr. Fibrillation. 13(1), 2403. https://doi.org/10.4022/JAFIB.2403 (2020). - PubMed
  5. Goldstein, D. S. The possible association between COVID-19 and postural tachycardia syndrome. Heart Rhythm S1547–5271(20), 31141–31143. https://doi.org/10.1016/j.hrthm.2020.12.007 (2020). - PubMed
  6. Nwazue, V. C. et al. Postural tachycardia syndrome and inappropriate sinus tachycardia: Role of autonomic modulation and sinus node automaticity. J. Am. Heart Assoc. 3(2), e000700. https://doi.org/10.1161/JAHA.113.000700 (2014). - PubMed
  7. Swai, J., Hu, Z., Zhao, X., Rugambwa, T. & Ming, G. Heart rate and heart rate variability comparison between postural orthostatic tachycardia syndrome versus healthy participants; A systematic review and meta-analysis. BMC Cardiovasc. Disord. 19(1), 320. https://doi.org/10.1186/s12872-019-01298-y (2019). - PubMed
  8. Olshanky, B. & Sullivan, R. M. Inappropriate sinus tachycardia. J. Am. Coll. Cardiol. 63(8), 793–801. https://doi.org/10.1016/j.jac.2012.07.074 (2013). - PubMed
  9. Yu, C. M. et al. Cardiovascular complications of severe acute respiratory syndrome. Postgrad. Med. J. 82(964), 140–144. https://doi.org/10.1136/pgmj.2005.037515 (2006). - PubMed
  10. Madjid, M. et al. Potential effects of coronaviruses on the cardiovascular system: A review. JAMA Cardiol. 5(7), 831–840. https://doi.org/10.1001/jamacardio.2020.1286 (2020). - PubMed
  11. Goldberger, J. J. et al. Autonomic nervous system dysfunction: JACC focus seminar. J. Am. Coll. Cardiol. 73(10), 1189–1206. https://doi.org/10.1016/j.jacc.2018.12.064 (2019). - PubMed
  12. Chow, D. et al. Symptoms of autonomic dysfunction in human immunodeficiency virus. Open Forum Infect. Dis. 2(3), ofv103. https://doi.org/10.1093/ofid/ofv103 (2015). - PubMed
  13. Carod-Artal, F. J. Infectious diseases causing autonomic dysfunction. Clin. Auton. Res. 28(1), 67–81. https://doi.org/10.1007/s10286-017-0452-4 (2018). - PubMed
  14. Mittal, C. M., Wig, N., Mishra, S. & Deepak, K. K. Heart rate variability in human immunodeficiency virus-positive individuals. Int. J. Cardiol. 94(1), 1–6. https://doi.org/10.1016/j.ijcard.2003.02.002 (2004). - PubMed
  15. Hemachudha, T. et al. Human rabies: Neuropathogenesis, diagnosis, and management. Lancet Neurol. 12(5), 498–513. https://doi.org/10.1016/S1474-4422(13)70038-3 (2013). - PubMed
  16. Abboud, H. et al. COVID-19 and SARS-Cov-2 infection: Pathophysiology and clinical effects on the nervous system. World Neurosurg. https://doi.org/10.1016/j.wneu.2020.05.193 (2020). - PubMed
  17. Low, P. A. & Sandroni, P. Postural tachycardia syndrome (POTS). Primer Auton. Nervous Syst. https://doi.org/10.1016/B978-0-12-386525-0.00106-2 (2012). - PubMed
  18. Schondorf, R. & Low, P. A. Idiopathic postural orthostatic tachycardia syndrome: An attenuated form of acute pandysautonomia?. Neurology 43(1), 132–137. https://doi.org/10.1212/wnl.43.1_part_1.132 (1993). - PubMed
  19. Zubair, A. S. et al. Neuropathogenesis and neurologic manifestations of the coronaviruses in the age of coronavirus disease 2019: A review. JAMA Neurol. 77(8), 1018–1027. https://doi.org/10.1001/jamaneurol.2020.2065 (2020). - PubMed
  20. Yachou, Y., El Idrissi, A., Belapasov, V. & Ait, B. S. Neuroinvasion, neurotropic, and neuroinflammatory events of SARS-CoV-2: Understanding the neurological manifestations in COVID-19 patients. Neurol. Sci. 41(10), 2657–2669. https://doi.org/10.1007/s10072-020-04575-3 (2020). - PubMed
  21. Song, E. et al. Neuroinvasion of SARS-CoV-2 in human and mouse brain. J. Exp. Med. 218(3), e20202135. https://doi.org/10.1084/jem.20202135 (2021). - PubMed
  22. Karuppan, M. K. M. et al. SARS-CoV-2 infection in the central and peripheral nervous system-associated morbidities and their potential mechanism. Mol. Neurobiol. 58(6), 2465–2480. https://doi.org/10.1007/s12035-020-02245-1 (2021). - PubMed
  23. Rahman, A. et al. Silent hypoxia in COVID-19: Pathomechanism and possible management strategy. Mol. Biol. Rep. https://doi.org/10.1007/s11033-021-06358-1 (2021). - PubMed
  24. Barizien, N. et al. Clinical characterization of dysautonomia in long COVID-19 patients. Sci. Rep. https://doi.org/10.1038/s41598-021-93546-5 (2021). - PubMed

Publication Types