Display options
Share it on

Exp Mol Med. 2022 Jan 07; doi: 10.1038/s12276-021-00720-w. Epub 2022 Jan 07.

CU06-1004 enhances vascular integrity and improves cardiac remodeling by suppressing edema and inflammation in myocardial ischemia-reperfusion injury.

Experimental & molecular medicine

Haiying Zhang, Hyeok Kim, Bong Woo Park, Minyoung Noh, Yeomyeong Kim, Jeongeun Park, Jae-Hyun Park, Jin-Ju Kim, Woo-Sup Sim, Kiwon Ban, Hun-Jun Park, Young-Guen Kwon

Affiliations

  1. Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 120-749, Republic of Korea.
  2. R&D Department, Curacle Co. Ltd, Seongnam-si, Republic of Korea.
  3. Department of Medical Life Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea.
  4. Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, 999077, Hong Kong.
  5. Department of Medical Life Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea. [email protected].
  6. Division of Cardiology, Department of Internal Medicine, The Catholic University of Korea, Banpo-daero 222, Seocho-gu, Seoul, 137701, Republic of Korea. [email protected].
  7. Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 120-749, Republic of Korea. [email protected].

PMID: 34997212 DOI: 10.1038/s12276-021-00720-w

Abstract

Ischemia-reperfusion (I/R) injury accelerates the cardiomyocytes (CMs) death by oxidative stress, and thereby deteriorates cardiac function. There has been a paradigm shift in the therapeutic perspective more towards the prevention or amelioration of damage caused by reperfusion. Cardiac microvascular endothelial cells (CMECs) are more vulnerable to reperfusion injury and play the crucial roles more than CMs in the pathological process of early I/R injury. In this study, we investigate that CU06-1004, as a vascular leakage blocker, can improve cardiac function by inhibiting CMEC's hyperpermeability and subsequently reducing the neutrophil's plugging and infiltration in infarcted hearts. CU06-1004 was delivered intravenously 5 min before reperfusion and the rats were randomly divided into three groups: (1) vehicle, (2) low-CU06-1004 (1 mg/kg, twice at 24 h intervals), and (3) high-CU06-1004 (5 mg/kg, once before reperfusion). CU06-1004 treatment reduced necrotic size and cardiac edema by enhancing vascular integrity, as demonstrated by the presence of intact junction proteins on CMECs and surrounding pericytes in early I/R injury. It also decreased the expression of vascular cell adhesion molecule 1 (VCAM-1) on CMECs, resulting in reduced infiltration of neutrophils and macrophages. Echocardiography showed that the CU06-1004 treatment significantly improved cardiac function compared with the vehicle group. Interestingly, single high-dose treatment with CU06-1004 provided a greater functional improvement than repetitive low-dose treatment until 8 weeks post I/R. These findings demonstrate that CU06-1004 enhances vascular integrity and improves cardiac function by preventing lethal myocardial I/R injury. It can provide a promising therapeutic option, as potential adjunctive therapy to current reperfusion strategies.

© 2021. The Author(s).

References

  1. Anderson, J. L. & Morrow, D. A. Acute myocardial infarction. N. Engl. J. Med. 376, 2053–2064 (2017). - PubMed
  2. Ibáñez, B., Heusch, G., Ovize, M. & Van de Werf, F. Evolving therapies for myocardial ischemia/reperfusion injury. J. Am. Coll. Cardiol. 65, 1454–1471 (2015). - PubMed
  3. Neri, M., Riezzo, I., Pascale, N., Pomara, C. & Turillazzi, E. Ischemia/reperfusion injury following acute myocardial infarction: a critical issue for clinicians and forensic pathologists. Mediators Inflamm. 2017, 7018393 (2017). - PubMed
  4. Mancini, G. B. et al. Angiotensin-converting enzyme inhibition with quinapril improves endothelial vasomotor dysfunction in patients with coronary artery disease. The TREND (Trial on Reversing ENdothelial Dysfunction) Study. Circulation 94, 258–265 (1996). - PubMed
  5. Heitzer, T., Just, H. & Münzel, T. Antioxidant vitamin C improves endothelial dysfunction in chronic smokers. Circulation 94, 6–9 (1996). - PubMed
  6. Barrios, V., Calderón, A., Navarro-Cid, J., Lahera, V. & Ruilope, L. M. N-acetylcysteine potentiates the antihypertensive effect of ACE inhibitors in hypertensive patients. Blood Pressure 11, 235–239 (2002). - PubMed
  7. Zepeda, R. J. et al. Effect of carvedilol and nebivolol on oxidative stress-related parameters and endothelial function in patients with essential hypertension. Basic Clin. Pharmacol. Toxicol. 111, 309–316 (2012). - PubMed
  8. Wilkerson, B. A. & Argraves, K. M. The role of sphingosine-1-phosphate in endothelial barrier function. Biochim. Biophys. Acta 1841, 1403–1412 (2014). - PubMed
  9. Ceconi, C. et al. Noradrenaline, atrial natriuretic peptide, bombesin and neurotensin in myocardium and blood of rats in congestive cardiac failure. Cardiovasc. Res. 23, 674–682 (1989). - PubMed
  10. Singhal, A. K., Symons, J. D., Boudina, S., Jaishy, B. & Shiu, Y. T. Role of endothelial cells in myocardial ischemia-reperfusion injury. Vasc. Dis. Prev. 7, 1–14 (2010). - PubMed
  11. Zhang, H. et al. Sac-1004, a vascular leakage blocker, reduces cerebral ischemia—reperfusion injury by suppressing blood–brain barrier disruption and inflammation. J. Neuroinflammation 14, 122 (2017). - PubMed
  12. Maharjan, S. et al. Sac-1004, a novel vascular leakage blocker, enhances endothelial barrier through the cAMP/Rac/cortactin pathway. Biochem. Biophys. Res. Commun. 435, 420–427 (2013). - PubMed
  13. Agrawal, V. et al. Direct endothelial junction restoration results in significant tumor vascular normalization and metastasis inhibition in mice. Oncotarget 5, 2761–2777 (2014). - PubMed
  14. Colliva, A., Braga, L., Giacca, M. & Zacchigna, S. Endothelial cell-cardiomyocyte crosstalk in heart development and disease. J. Physiol. 598, 2923–2939 (2020). - PubMed
  15. Scarabelli, T. et al. Apoptosis of endothelial cells precedes myocyte cell apoptosis in ischemia/reperfusion injury. Circulation 104, 253–256 (2001). - PubMed
  16. Chen, G. et al. Cardiomyocyte-derived small extracellular vesicles can signal eNOS activation in cardiac microvascular endothelial cells to protect against Ischemia/Reperfusion injury. Theranostics 10, 11754–11774 (2020). - PubMed
  17. Carnicer, R., Crabtree, M. J., Sivakumaran, V., Casadei, B. & Kass, D. A. Nitric oxide synthases in heart failure. Antioxid. Redox Signal 18, 1078–1099 (2013). - PubMed
  18. Khairoun, M. et al. Renal ischemia-reperfusion induces a dysbalance of angiopoietins, accompanied by proliferation of pericytes and fibrosis. Am. J. Physiol. Ren. Physiol. 305, F901–F910 (2013). - PubMed
  19. Frangogiannis, N. G. Inflammation in cardiac injury, repair and regeneration. Curr. Opin. Cardiol. 30, 240–245 (2015). - PubMed
  20. Chen, L. et al. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 9, 7204–7218 (2018). - PubMed
  21. Frangogiannis, N. G. The inflammatory response in myocardial injury, repair, and remodelling. Nat. Rev. Cardiol. 11, 255–265 (2014). - PubMed
  22. Toldo, S., Mauro, A. G., Cutter, Z. & Abbate, A. Inflammasome, pyroptosis, and cytokines in myocardial ischemia-reperfusion injury. Am. J. Physiol. Heart Circ. Physiol. 315, H1553–h1568 (2018). - PubMed
  23. Aslam, M. et al. Hypoxia-reoxygenation-induced endothelial barrier failure: role of RhoA, Rac1 and myosin light chain kinase. J. Physiol. 591, 461–473 (2013). - PubMed
  24. Millar, T. M., Phan, V. & Tibbles, L. A. ROS generation in endothelial hypoxia and reoxygenation stimulates MAP kinase signaling and kinase-dependent neutrophil recruitment. Free Radic. Biol. Med. 42, 1165–1177 (2007). - PubMed
  25. Yang, Q., He, G. W., Underwood, M. J. & Yu, C. M. Cellular and molecular mechanisms of endothelial ischemia/reperfusion injury: perspectives and implications for postischemic myocardial protection. Am. J. Transl. Res 8, 765–777 (2016). - PubMed
  26. Hadi, H. A., Carr, C. S. & Al Suwaidi, J. Endothelial dysfunction: cardiovascular risk factors, therapy, and outcome. Vasc. Health Risk Manag. 1, 183–198 (2005). - PubMed
  27. Hausenloy, D. J. et al. Novel targets and future strategies for acute cardioprotection: position paper of the European Society of Cardiology Working Group on Cellular Biology of the Heart. Cardiovasc. Res 113, 564–585 (2017). - PubMed
  28. Kitakaze, M. et al. Human atrial natriuretic peptide and nicorandil as adjuncts to reperfusion treatment for acute myocardial infarction (J-WIND): two randomised trials. Lancet 370, 1483–1493 (2007). - PubMed
  29. Kyhl, K. et al. A post hoc analysis of long-term prognosis after exenatide treatment in patients with ST-segment elevation myocardial infarction. EuroIntervention 12, 449–455 (2016). - PubMed
  30. Roolvink, V. et al. Early intravenous beta-blockers in patients with ST-segment elevation myocardial infarction before primary percutaneous coronary intervention. J. Am. Coll. Cardiol. 67, 2705–2715 (2016). - PubMed
  31. Ottani, F. et al. Cyclosporine A in reperfused myocardial infarction: the multicenter, controlled, open-label CYCLE trial. J. Am. Coll. Cardiol. 67, 365–374 (2016). - PubMed
  32. Gaboury, J. P., Anderson, D. C. & Kubes, P. Molecular mechanisms involved in superoxide-induced leukocyte-endothelial cell interactions in vivo. Am. J. Physiol. 266, H637–H642 (1994). - PubMed
  33. Patel, K. D., Zimmerman, G. A., Prescott, S. M., McEver, R. P. & McIntyre, T. M. Oxygen radicals induce human endothelial cells to express GMP-140 and bind neutrophils. J. Cell Biol. 112, 749–759 (1991). - PubMed
  34. Lucchesi, B. R. Complement activation, neutrophils, and oxygen radicals in reperfusion injury. Stroke 24, I41–I47 (1993). discussion I38-40. - PubMed
  35. Brutsaert, D. L. Cardiac endothelial-myocardial signaling: its role in cardiac growth, contractile performance, and rhythmicity. Physiol. Rev. 83, 59–115 (2003). - PubMed
  36. Brutsaert, D. L., Fransen, P., Andries, L. J., De Keulenaer, G. W. & Sys, S. U. Cardiac endothelium and myocardial function1. Cardiovasc. Res. 38, 281–290 (1998). - PubMed
  37. Davidson, S. M. et al. Endothelial cells release cardioprotective exosomes that may contribute to ischaemic preconditioning. Sci. Rep. 8, 15885 (2018). - PubMed
  38. Leucker, T. M. et al. Impairment of endothelial-myocardial interaction increases the susceptibility of cardiomyocytes to ischemia/reperfusion injury. PLoS ONE 8, e70088 (2013). - PubMed
  39. Kongpol, K., Nernpermpisooth, N., Prompunt, E. & Kumphune, S. Endothelial-cell-derived human secretory leukocyte protease inhibitor (SLPI) protects cardiomyocytes against ischemia/reperfusion injury. Biomolecules 9, 678 (2019). - PubMed
  40. Kuramochi, Y. et al. Cardiac endothelial cells regulate reactive oxygen species-induced cardiomyocyte apoptosis through neuregulin-1beta/erbB4 signaling. J. Biol. Chem. 279, 51141–51147 (2004). - PubMed
  41. Bonaventura, J. & Gow, A. NO and superoxide: opposite ends of the seesaw in cardiac contractility. Proc. Natl Acad. Sci. USA 101, 16403–16404 (2004). - PubMed
  42. Kloner, R. A. No-reflow phenomenon: maintaining vascular integrity. J. Cardiovasc. Pharmacol. Ther. 16, 244–250 (2011). - PubMed

Publication Types

Grant support