Display options
Share it on

J Cell Mol Med. 2022 Jan 09; doi: 10.1111/jcmm.17174. Epub 2022 Jan 09.

The role of fibroblast growth factor 8 in cartilage development and disease.

Journal of cellular and molecular medicine

Haoran Chen, Yujia Cui, Demao Zhang, Jing Xie, Xuedong Zhou

Affiliations

  1. State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
  2. Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.

PMID: 35001536 DOI: 10.1111/jcmm.17174

Abstract

Fibroblast growth factor 8 (FGF-8), also known as androgen-induced growth factor (AIGF), is presumed to be a potent mitogenic cytokine that plays important roles in early embryonic development, brain formation and limb development. In the bone environment, FGF-8 produced or received by chondrocyte precursor cells binds to fibroblast growth factor receptor (FGFR), causing different levels of activation of downstream signalling pathways, such as phospholipase C gamma (PLCγ)/Ca

© 2022 The Authors. Journal of Cellular and Molecular Medicine published by Foundation for Cellular and Molecular Medicine and John Wiley & Sons Ltd.

Keywords: FGF-8; cartilage; chondrocyte; osteoarthritis; skeletal system

References

  1. Chijimatsu R, Saito T. Mechanisms of synovial joint and articular cartilage development. Cell Mol Life Sci. 2019;76(20):3939-3952. 10.1007/s00018-019-03191-5 - PubMed
  2. Chen TM, Chen YH, Sun HS, et al. Fibroblast growth factors: potential novel targets for regenerative therapy of osteoarthritis. Chin J Physiol. 2019;62(1):2-10. 10.4103/CJP.CJP_11_19 - PubMed
  3. Duan M, Wang Q, Liu Y, Xie J. The role of TGF-beta2 in cartilage development and diseases. Bone Joint Res. 2021;10(8):474-487. 10.1302/2046-3758.108.BJR-2021-0086 - PubMed
  4. Xie YL, Zinkle A, Chen L, Mohammadi M. Fibroblast growth factor signalling in osteoarthritis and cartilage repair. Nat Rev Rheumatol. 2020;16(10):547-564. 10.1038/s41584-020-0469-2 - PubMed
  5. Ellman MB, Yan D, Ahmadinia K, Chen D, An HS, Im HJ. Fibroblast growth factor control of cartilage homeostasis. J Cell Biochem. 2013;114(4):735-742. 10.1002/jcb.24418 - PubMed
  6. Su N, Jin M, Chen L. Role of FGF/FGFR signaling in skeletal development and homeostasis: learning from mouse models. Bone Res. 2014;2:14003. 10.1038/boneres.2014.3 - PubMed
  7. Ornitz DM, Marie PJ. Fibroblast growth factor signaling in skeletal development and disease. Genes Dev. 2015;29(14):1463-1486. 10.1101/gad.266551.115 - PubMed
  8. Beenken A, Mohammadi M. The FGF family: biology, pathophysiology and therapy. Nat Rev Drug Discov. 2009;8(3):235-253. 10.1038/nrd2792 - PubMed
  9. Chen H, Li JZ, Zhang DM, Zhou XD, Xie J. Role of the fibroblast growth factor 19 in the skeletal system. Life Sci. 2021;265:118804. 10.1016/j.lfs.2020.118804 - PubMed
  10. Pu J, Wang R, Zhang G, Wang J. FGF-7 facilitates the process of psoriasis by inducing TNF-alpha expression in HaCaT cells. Acta Biochim Biophys Sin (Shanghai). 2019;51(10):1056-1063. 10.1093/abbs/gmz095 - PubMed
  11. Zhu S, Ma L, Wu Y, et al. FGF21 treatment ameliorates alcoholic fatty liver through activation of AMPK-SIRT1 pathway. Acta Biochim Biophys Sin (Shanghai). 2014;46(12):1041-1048. 10.1093/abbs/gmu097 - PubMed
  12. Boylan M, Anderson M, Ornitz DM, Lewandoski M. The Fgf8 subfamily (Fgf8, Fgf17 and Fgf18) is required for closure of the embryonic ventral body wall. Development. 2020;147(21):dev189506. 10.1242/dev.189506 - PubMed
  13. Becic T, Kero D, Vukojevic K, Mardesic S, Saraga-Babic M. Growth factors FGF8 and FGF2 and their receptor FGFR1, transcriptional factors Msx-1 and MSX-2, and apoptotic factors p19 and RIP5 participate in the early human limb development. Acta Histochem. 2018;120(3):205-214. 10.1016/j.acthis.2018.01.008 - PubMed
  14. Hung HI, Schoenwolf GC, Lewandoski M, Ornitz DM. A combined series of Fgf9 and Fgf18 mutant alleles identifies unique and redundant roles in skeletal development. Dev Biol. 2016;411(1):72-84. 10.1016/j.ydbio.2016.01.008 - PubMed
  15. Li X, Ellman MB, Kroin JS, et al. Species-specific biological effects of FGF-2 in articular cartilage: implication for distinct roles within the FGF receptor family. J Cell Biochem. 2012;113(7):2532-2542. 10.1002/jcb.24129 - PubMed
  16. Vincent TL, McLean CJ, Full LE, Peston D, Saklatvala J. FGF-2 is bound to perlecan in the pericellular matrix of articular cartilage, where it acts as a chondrocyte mechanotransducer. Osteoarthritis Cartilage. 2007;15(7):752-763. 10.1016/j.joca.2007.01.021 - PubMed
  17. Scearce-Levie K, Roberson ED, Gerstein H, et al. Abnormal social behaviors in mice lacking Fgf17. Genes Brain Behav. 2008;7(3):344-354. 10.1111/j.1601-183X.2007.00357-x - PubMed
  18. Liu ZH, Lavine KJ, Hung IH, Ornitz DM. FGF18 is required for early chondrocyte proliferation, hypertrophy and vascular invasion of the growth plate. Dev Biol. 2007;302(1):80-91. 10.1016/j.ydbio.2006.08.071 - PubMed
  19. Liu ZH, Xu JS, Colvin JS, Ornitz DM. Coordination of chondrogenesis and osteogenesis by fibroblast growth factor 18. Genes Dev. 2002;16(7):859-869. 10.1101/gad.965602 - PubMed
  20. Xiao WJ, Zhang GM, Ye DW. Functional interaction of fibroblast growth factor 8b and androgen in prostate cancer cell proliferation. Tumour Biol. 2017;39(3):1010428317695969. 10.1177/1010428317695969 - PubMed
  21. Tanaka A, Miyamoto K, Minamino N, et al. Cloning and characterization of an androgen-induced growth factor essential for the androgen-dependent growth of mouse mammary carcinoma cells. Proc Natl Acad Sci USA. 1992;89(19):8928-8932. 10.1073/pnas.89.19.8928 - PubMed
  22. Hao YL, Tang SY, Yuan Y, Liu R, Chen QM. Roles of FGF8 subfamily in embryogenesis and oral-maxillofacial diseases (Review). Int J Oncol. 2019;54(3):797-806. 10.3892/ijo.2019.4677 - PubMed
  23. da Costa MC, Trentin AG, Calloni GW. FGF8 and Shh promote the survival and maintenance of multipotent neural crest progenitors. Mech Dev. 2018;154:251-258. 10.1016/j.mod.2018.07.012 - PubMed
  24. Singla RD, Wang J, Singla DK. Fibroblast growth factor-8 inhibits oxidative stress-induced apoptosis in H9c2 cells. Mol Cell Biochem. 2016;425(1-2):77-84. 10.1007/s11010-016-2863-2 - PubMed
  25. Gemel J, Gorry M, Ehrlich GD, MacArthur CA. Structure and sequence of human FGF8. Genomics. 1996;35(1):253-257. 10.1006/geno.1996.0349 - PubMed
  26. Teven CM, Farina EM, Rivas J, Reid RR. Fibroblast growth factor (FGF) signaling in development and skeletal diseases. Genes Dis. 2014;1(2):199-213. 10.1016/j.gendis.2014.09.005 - PubMed
  27. Blunt AG, Lawshe A, Cunningham ML, et al. Overlapping expression and redundant activation of mesenchymal fibroblast growth factor (FGF) receptors by alternatively spliced FGF-8 ligands. J Biol Chem. 1997;272(6):3733-3738. 10.1074/jbc.272.6.3733 - PubMed
  28. Vieira WA, Wells KM, Raymond MJ, et al. FGF, BMP, and RA signaling are sufficient for the induction of complete limb regeneration from non-regenerating wounds on Ambystoma mexicanum limbs. Dev Biol. 2019;451(2):146-157. 10.1016/j.ydbio.2019.04.008 - PubMed
  29. Falardeau J, Chung WCJ, Beenken A, et al. Decreased FGF8 signaling causes deficiency of gonadotropin-releasing hormone in humans and mice. J Clin Invest. 2008;118(8):2822-2831. 10.1172/JCI34538 - PubMed
  30. Gebuijs IGE, Raterman ST, Metz JR, et al. Fgf8a mutation affects craniofacial development and skeletal gene expression in zebrafish larvae. Biol Open. 2019;8(9):bio039834. 10.1242/bio.039834 - PubMed
  31. Schwertfeger KL. Fibroblast growth factors in development and cancer: insights from the mammary and prostate glands. Curr Drug Targets. 2009;10(7):632-644. 10.2174/138945009788680419 - PubMed
  32. Mattila MM, Harkönen PL. Role of fibroblast growth factor 8 in growth and progression of hormonal cancer. Cytokine Growth Factor Rev. 2007;18(3-4):257-266. 10.1016/j.cytogfr.2007.04.010 - PubMed
  33. Yang Y, Wei J, Li J, Cui Y, Zhou X, Xie J. Lipid metabolism in cartilage and its diseases: a concise review of the research progress. Acta Biochim Biophys Sin (Shanghai). 2021;53(5):517-527. 10.1093/abbs/gmab021 - PubMed
  34. Zhou C, Wang Q, Zhang D, Cai L, Du W, Xie J. Compliant substratum modulates vinculin expression in focal adhesion plaques in skeletal cells. Int J Oral Sci. 2019;11(2):18. 10.1038/s41368-019-0052-3 - PubMed
  35. Li JZ, Chen H, Zhang DM, Xie J, Zhou XD. The role of stromal cell-derived factor 1 on cartilage development and disease. Osteoarthritis Cartilage. 2021;29(3):313-322. 10.1016/j.joca.2020.10.010 - PubMed
  36. Huh SH, Ha L, Jang HS. Nephron progenitor maintenance is controlled through fibroblast growth factors and sprouty1 interaction. J Am Soc Nephrol. 2020;31(11):2559-2572. 10.1681/ASN.2020040401 - PubMed
  37. Chen L, Xie YL, Xu M, Chen HG. FGF signaling in cartilage development and disease. Encyclopedia Bone Biol. 2020;560-574. 10.1016/B978-0-12-801238-3.11186-9 - PubMed
  38. McClurg O, Tinson R, Troeberg L. Targeting cartilage degradation in osteoarthritis. Pharmaceuticals (Basel). 2021;14(2):126. 10.3390/ph14020126 - PubMed
  39. Zhai W, Lu H, Dong S, Fang J, Yu Z. Identification of potential key genes and key pathways related to clear cell renal cell carcinoma through bioinformatics analysis. Acta Biochim Biophys Sin (Shanghai). 2020;52(8):853-863. 10.1093/abbs/gmaa068 - PubMed
  40. Jiang ZL, Guerrero-Netro HM, Juengel JL, Price CA. Divergence of intracellular signaling pathways and early response genes of two closely related fibroblast growth factors, FGF8 and FGF18, in bovine ovarian granulosa cells. Mol Cell Endocrinol. 2013;375(1-2):97-105. 10.1016/j.mce.2013.05.017 - PubMed
  41. Horton WA, Degnin CR. FGFs in endochondral skeletal development. Trends Endocrinol Meta. 2009;20(7):341-348. 10.1016/j.tem.2009.04.003 - PubMed
  42. Nacu E, Gromberg E, Oliveira CR, Drechsel D, Tanaka EM. FGF8 and SHH substitute for anterior-posterior tissue interactions to induce limb regeneration. Nature. 2016;533(7603):407-410. 10.1038/nature17972 - PubMed
  43. Ornitz DM, Itoh N. The Fibroblast Growth Factor signaling pathway. Wiley Interdiscip Rev Dev Biol. 2015;4(3):215-266. 10.1002/wdev.176 - PubMed
  44. Boulet AM, Moon AM, Arenkiel BR, Capecchi MR. The roles of Fgf4 and Fgf8 in limb bud initiation and outgrowth. Dev Biol. 2004;273(2):361-372. 10.1016/j.ydbio.2004.06.012 - PubMed
  45. Bobick BE, Thornhill TM, Kulyk WM. Fibroblast growth factors 2, 4, and 8 exert both negative and positive effects on limb, frontonasal, and mandibular chondrogenesis via MEK-ERK activation. J Cell Physiol. 2007;211(1):233-243. 10.1002/jcp.20923 - PubMed
  46. Otsuka T, Mengsteab PY, Laurencin CT. (2021) Control of mesenchymal cell fate via application of FGF-8b in vitro. Stem Cell Res. 2021;51:102155. 10.1016/j.scr.2021.102155 - PubMed
  47. Dunkel H, Chaverra M, Bradley R, Lefcort F. FGF signaling is required for chemokinesis and ventral migration of trunk neural crest cells. Dev Dyn. 2020;249(9):1077-1097. 10.1002/dvdy.190 - PubMed
  48. Valve E, Penttilä TL, Paranko J, Härkönen P. FGF-8 is expressed during specific phases of rodent oocyte and spermatogonium development. Biochem Biophys Res Commun. 1997;232(1):173-177. 10.1006/bbrc.1997.6256 - PubMed
  49. Hao YL, Xiao YX, Liao XY, et al. FGF8 induces epithelial-mesenchymal transition and promotes metastasis in oral squamous cell carcinoma. Int J Oral Sci. 2021;13(1):6. 10.1038/s41368-021-00111-x - PubMed
  50. Berenguer M, Duester G. Role of retinoic acid signaling, FGF signaling and meis genes in control of limb development. Biomolecules. 2021;11(1):80. 10.3390/biom11010080 - PubMed
  51. Yan DY, Chen D, Cool SM, et al. Fibroblast growth factor receptor 1 is principally responsible for fibroblast growth factor 2-induced catabolic activities in human articular chondrocytes. Arthritis Res Ther. 2011;13(4):R130. 10.1186/ar3441 - PubMed
  52. Bi W, Deng JM, Zhang Z, Behringer RR, de Crombrugghe B. Sox9 is required for cartilage formation. Nat Genet. 1999;22(1):85-89. 10.1038/8792 - PubMed
  53. Dash S, Trainor PA. Nucleolin loss-of-function leads to aberrant FGF signaling and craniofacial anomalies. BioRxiv preprint. 2021:460382: 10.1101/2021.09.14.460382 - PubMed
  54. Ornitz DM, Marie PJ. FGF signaling pathways in endochondral and intramembranous bone development and human genetic disease. Genes Dev. 2002;16(12):1446-1465. 10.1101/gad.990702 - PubMed
  55. Akiyama H, Chaboissier MC, Martin JF, Schedl A, de Crombrugghe B. The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6. Genes Dev. 2002;16(21):2813-2828. 10.1101/gad.1017802 - PubMed
  56. Duan WP, Zhao Y, Ren XC, et al. Combination of chondrocytes and chondrons improves extracellular matrix production to promote the repairs of defective knee cartilage in rabbits. J Orthop Translat. 2021;28:47-54. 10.1016/j.jot.2021.01.004 - PubMed
  57. Coryell PR, Diekman BO, Loeser RF. Mechanisms and therapeutic implications of cellular senescence in osteoarthritis. Nat Rev Rheumatol. 2021;17(1):47-57. 10.1038/s41584-020-00533-7 - PubMed
  58. Liu Y, Duan M, Guo D, et al. PDGF-AA promotes cell-to-cell communication in osteocytes through PI3K/Akt signaling pathway. Acta Biochim Biophys Sin (Shanghai). 2021;53(12):1640-1649. 10.1093/abbs/gmab136 - PubMed
  59. Linscott ML, Chung WCJ. TET1 regulates fibroblast growth factor 8 transcription in gonadotropin releasing hormone neurons. PLoS One. 2019;14(7):e0220530. 10.1371/journal.pone.0220530 - PubMed
  60. Ismail HM, Yamamoto K, Vincent TL, Nagase H, Troeberg L, Saklatvala J. Interleukin-1 acts via the JNK-2 Signaling pathway to induce aggrecan degradation by human chondrocytes. Arthritis Rheumatol. 2015;67(7):1826-1836. 10.1002/art.39099 - PubMed
  61. Kawata M, Taniguchi Y, Mori D, et al. Different regulation of limb development by p63 transcript variants. PLoS One. 2017;12(3):e0174122. 10.1371/journal.pone.0174122 - PubMed
  62. Xu J, Huang Z, Wang W, et al. FGF8 signaling alters the osteogenic cell fate in the hard palate. J Dent Res. 2018;97(5):589-596. 10.1177/0022034517750141 - PubMed
  63. Cho GS, Park DS, Choi SC, Han JK. Tbx2 regulates anterior neural specification by repressing FGF signaling pathway. Dev Biol. 2017;421(2):183-193. 10.1016/j.ydbio.2016.11.020 - PubMed
  64. Ohta K, Aoyama E, Ahmad SAI, et al. CCN2/CTGF binds the small leucine rich proteoglycan protein Tsukushi. J Cell Commun Signal. 2019;13(1):113-118. 10.1007/s12079-018-0487-x - PubMed
  65. Teng YQ, Kanasaki K, Bardeesy N, Sugimoto H, Kalluri R. Deletion of Smad4 in fibroblasts leads to defective chondrocyte maturation and cartilage production in a TGFβ type II receptor independent manner. Biochem Biophys Res Commun. 2011;407(4):633-639. 10.1016/j.bbrc.2011.02.142 - PubMed
  66. Sun Y, Zhou L, Lv D, Liu H, He T, Wang X. Poly(ADP-ribose) polymerase 1 inhibition prevents interleukin-1beta-induced inflammation in human osteoarthritic chondrocytes. Acta Biochim Biophys Sin (Shanghai). 2015;47(6):422-430. 10.1093/abbs/gmv033 - PubMed
  67. Wu WJ, Gu SP, Sun C, et al. Altered FGF signaling pathways impair cell proliferation and elevation of palate shelves. PLoS One. 2015;10(9):e0136951. 10.1371/journal.pone.0136951 - PubMed
  68. Liu HZ, Fang Q, Wang MY, et al. FGF8 and FGFR3 are up-regulated in hypertrophic chondrocytes: association with chondrocyte death in deep zone of Kashin-Beck disease. Biochem Biophys Res Commun. 2018;500(2):184-190. 10.1016/j.bbrc.2018.04.023 - PubMed
  69. Chen L, Adar R, Yang X, et al. Gly369Cys mutation in mouse FGFR3 causes achondroplasia by affecting both chondrogenesis and osteogenesis. J Clin Invest. 1999;104(11):1517-1525. 10.1172/JCI6690 - PubMed
  70. Schmidt L, Taiyab A, Melvin VS, Jones KL, Williams T. Increased FGF8 signaling promotes chondrogenic rather than osteogenic development in the embryonic skull. Dis Model Mech. 2018;11(6):dmm031526. 10.1242/dmm.031526 - PubMed
  71. Xu J, Wang LY, Huang Z, Chen YP, Shao MY. Exogenous FGF8 signaling in osteocytes leads to mandibular hypoplasia in mice. Oral Dis. 2020;26(3):590-596. 10.1111/odi.13262 - PubMed
  72. Liu X, D'Cruz AA, Hansen J, et al. Deleting suppressor of cytokine signaling-3 in chondrocytes reduces bone growth by disrupting mitogen-activated protein kinase signaling. Osteoarthritis Cartilage. 2019;27(10):1557-1563. 10.1016/j.joca.2019.05.018 - PubMed
  73. Valta MP, Teuvo H, Qiang Q, et al. Regulation of osteoblast differentiation: a novel function for fibroblast growth factor 8. Endocrinology. 2006;147(5):2171-2182. 10.1210/en.2005-1502 - PubMed
  74. Ornitz DM. FGF signaling in the developing endochondral skeleton. Cytokine Growth Factor Rev. 2005;16(2):205-213. 10.1101/gad.965602 - PubMed
  75. Krejci P, Prochazkova J, Smutny J, et al. FGFR3 signaling induces a reversible senescence phenotype in chondrocytes similar to oncogene-induced premature senescence. Bone. 2010;41(7):102-110. 10.1016/j.bone.2010.03.021 - PubMed
  76. Krejci P, Prochazkova J, Bryja V, et al. Fibroblast growth factor inhibits interferon γ-STAT1 and interleukin 6-STAT3 signaling in chondrocytes. Cell Signal. 2009;21(1):151-160. 10.1016/j.cellsig.2008.10.006 - PubMed
  77. Ansari MY, Ahmad N, Haqqi TM. Oxidative stress and inflammation in osteoarthritis pathogenesis: role of polyphenols. Biomed Pharmacother. 2020;129:110452. 10.1016/j.biopha.2020.110452 - PubMed
  78. Sahni M, Ambrosetti DC, Mansukhani A, Gertner R, Levy D, Basilico C. FGF signaling inhibits chondrocyte proliferation and regulates bone development through the STAT-1 pathway. Genes Dev. 1999;13(11):1361-1366. 10.1101/gad.13.11.1361 - PubMed
  79. Aurrekoetxea M, Irastorza I, García-Gallastegui P, et al. Wnt/β-Catenin regulates the activity of epiprofin/Sp6, SHH, FGF, and BMP to coordinate the stages of odontogenesis. Front Cell Dev Biol. 2016;4:25. 10.3389/fcell.2016.00025 - PubMed
  80. Buchtova M, Oralova V, Aklian A, et al. Fibroblast growth factor and canonical WNT/β-catenin signaling cooperate in suppression of chondrocyte differentiation in experimental models of FGFR signaling in cartilage. Biochim Biophys Acta. 2015;1852(5):839-850. 10.1016/j.bbadis.2014.12.020 - PubMed
  81. Bradley EW, Carpio LR, Newton AC, Westendorf JJ. Deletion of the PH-domain and leucine-rich repeat protein phosphatase 1 (Phlpp1) increases fibroblast growth factor (Fgf) 18 expression and promotes chondrocyte proliferation. J Biol Chem. 2015;190(26):16272-16280. 10.1074/jbc.M114.612937 - PubMed
  82. Kapadia RM, Guntur AR, Reinhold MI, Naski MC. Glycogen synthase kinase 3 controls endochondral bone development: contribution of fibroblast growth factor 18. Dev Biol. 2005;285(2):496-507. 10.1016/j.ydbio.2005.07.029 - PubMed
  83. Wei X, Sun C, Zhou RP, et al. Nerve growth factor promotes ASIC1a expression via the NF-κB pathway and enhances acid-induced chondrocyte apoptosis. Int Immunopharmacol. 2020;82:106340. 10.1016/j.intimp.2020.106340 - PubMed
  84. Zheng LL, Zhang ZJ, Sheng PY, Mobasheri A. The role of metabolism in chondrocyte dysfunction and the progression of osteoarthritis. Ageing Res Rev. 2021;66:101249. 10.1016/j.arr.2020.101249 - PubMed
  85. Xie J, Zhang D, Lin Y, Yuan Q, Zhou X. Anterior cruciate ligament transection-induced cellular and extracellular events in menisci: implications for osteoarthritis. Am J Sports Med. 2018;46(5):1185-1198. 10.1177/0363546518756087 - PubMed
  86. Marashi FA, Torabi A, Beaudry F. Granulosa cells exposed to fibroblast growth factor 8 and 18 reveal early onset of cell growth and survival. Int J Reprod Biomed. 2019;17(6):435-442. 10.18502/ijrm.v17i6.4815 - PubMed
  87. Lai WT, Krishnappa V, Phinney DG. Fibroblast growth factor 2 (Fgf2) inhibits differentiation of mesenchymal stem cells by inducing twist2 and spry4, blocking extracellular regulated kinase activation, and altering Fgf receptor expression Levels. Stem Cells. 2011;29(7):1102-1111. 10.1002/stem.661 - PubMed
  88. Weng MJ, Chen ZX, Xiao Q, Li RM, Chen ZQ. A review of FGF signaling in palate development. Biomed Pharmacother. 2018;103:240-247. 10.1016/j.biopha.2018.04.026 - PubMed
  89. Yang T, Bassuk AG, Fritzsch B. Prickle1 stunts limb growth through alteration of cell polarity and gene expression. Dev Dyn. 2013;242(11):1293-1306. 10.1002/dvdy.24025 - PubMed
  90. Rockel JS, Yu CY, Whetstone H, et al. Hedgehog inhibits β-catenin activity in synovial joint development and osteoarthritis. J Clin Invest. 2016;126(5):1649-1663. 10.1172/JCI80205 - PubMed
  91. Uchii M, Tamura T, Suda T, Kakuni M, Tanaka A, Miki I. Role of fibroblast growth factor 8 (FGF8) in animal models of osteoarthritis. Arthritis Res Ther. 2008;10(4):R90. 10.1186/ar2474 - PubMed
  92. Wang JC, Liu SZ, Li JY, Yi Z. The role of the fibroblast growth factor family in bone-related diseases. Chem Biol Drug Des. 2019;94(4):1740-1749. 10.1111/cbdd.13588 - PubMed
  93. Billinghurst RC, Dahlberg L, Ionescu M, et al. Enhanced cleavage of type II collagen by collagenases in osteoarthritic articular cartilage. J Clin Invest. 1997;99(7):1534-1545. 10.1172/JCI119316 - PubMed
  94. Morris KJ, Cs-Szabo G, Cole A. Characterization of TIMP-3 in human articular talar cartilage. Connect Tissue Res. 2010;51(6):478-490. 10.3109/03008201003686958 - PubMed
  95. Siemerink MJ, Klaassen I, Vogels IMC, Griffioen AW, Van Noorden CJF, Schlingemann RO. CD34 marks angiogenic tip cells in human vascular endothelial cell cultures. Angiogenesis. 2012;15(1):151-163. 10.1007/s10456-011-9251-z - PubMed
  96. Rieder B, Weihs AM, Weidinger A, et al. Hydrostatic pressure-generated reactive oxygen species induce osteoarthritic conditions in cartilage pellet cultures. Sci Rep. 2018;8(1):17010. 10.1038/s41598-018-34718-8 - PubMed
  97. Guan F, Li SY, Wang ZL, et al. Histopathology of chondronecrosis development in knee articular cartilage in a rat model of Kashin-Beck disease using T-2 toxin and selenium deficiency conditions. Rheumatol Int. 2013;33(1):157-166. 10.1007/s00296-011-2335-7 - PubMed
  98. Morita K, Miyamoto T, Fujita N, et al. Reactive oxygen species induce chondrocyte hypertrophy in endochondral ossification. J Exp Med. 2007;204(7):1613-1623. 10.1084/jem.20062525 - PubMed
  99. Dahlberg LE, Aydemir A, Muurahainen N, et al. A first-in-human, double-blind, randomised, placebo-controlled, dose ascending study of intra-articular rhFGF18 (sprifermin) in patients with advanced knee osteoarthritis. Clin Exp Rheumatol. 2016;34(3):445-450. PMID: 27050139. - PubMed
  100. Tachmazidou I, Hatzikotoulas K, Southam L, et al. Identification of new therapeutic targets for osteoarthritis through genome-wide analyses of UK Biobank data. Nat Genet. 2019;51(2):230-236. 10.1038/s41588-018-0327-1 - PubMed
  101. Mori Y, Saito T, Chang SH, et al. Identification of fibroblast growth factor-18 as a molecule to protect adult articular cartilage by gene expression profiling. J Biol Chem. 2014;289(14):10192-10200. 10.1074/jbc.M113.524090 - PubMed
  102. Moore EE, Bendele AM, Thompson DL, et al. Fibroblast growth factor-18 stimulates chondrogenesis and cartilage repair in a rat model of injury-induced osteoarthritis. Osteoarthritis Cartilage. 2005;13(7):623-631. 10.1016/j.joca.2005.03.003 - PubMed

Publication Types

Grant support