Display options
Share it on

Invest New Drugs. 2022 Jan 11; doi: 10.1007/s10637-022-01212-y. Epub 2022 Jan 11.

Phenformin increases early hematopoietic progenitors in the Jak2.

Investigational new drugs

Antônio Bruno Alves-Silva, Bruna Alves Fenerich, Natasha Peixoto Fonseca, Jaqueline Cristina Fernandes, Juan Luiz Coelho-Silva, Diego Antonio Pereira-Martins, Thiago Mantello Bianco, Priscila Santos Scheucher, Eduardo Magalhães Rego, Fernando Chahud, João Agostinho Machado-Neto, Lorena Lôbo Figueiredo-Pontes, Fabiola Traina

Affiliations

  1. Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil.
  2. Center for Cell Based Therapy, São Paulo Research Foundation, Ribeirão Preto, Brazil.
  3. Department of Internal Medicine, Ribeirão Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil.
  4. Hematology Division, Medical School of University of São Paulo, LIM31, São Paulo, Brazil.
  5. Departament of Pathology and Legal Medicine, University of São Paulo at Ribeirão Preto Medical School, Ribeirão Preto, Brazil.
  6. Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
  7. Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil. [email protected].
  8. Center for Cell Based Therapy, São Paulo Research Foundation, Ribeirão Preto, Brazil. [email protected].

PMID: 35015172 DOI: 10.1007/s10637-022-01212-y

Abstract

BACKGROUND:  Myeloproliferative neoplasms (MPN) are disorders characterized by an alteration at the hematopoietic stem cell (HSC) level, where the JAK2 mutation is the most common genetic alteration found in classic MPN (polycythemia vera, essential thrombocythemia, and primary myelofibrosis). We and others previously demonstrated that metformin reduced splenomegaly and platelets counts in peripheral blood in JAK2

AIMS: We herein aimed to investigate the effects of phenformin in MPN disease burden and stem cell function in Jak2

RESULTS: In vitro phenformin treatment reduced cell viability and increased apoptosis in SET2 JAK2

CONCLUSIONS: Phenformin increased the percentages of LSK, MP, and MPP populations, but did not reduce disease burden in Jak2

© 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.

Keywords: Biguanide; JAK2; Murine model; Myeloproliferative neoplasms; Phenformin; Polycythemia vera

References

  1. Swerdlow SH, Campo E, Harris NL et al (2017) WHO Classification of Tumors of Haematopoietic and Lymphoid Tissues, 4 - PubMed
  2. DAMESHEK W (1951) Some speculations on the myeloproliferative syndromes. Blood 6:372–375 - PubMed
  3. Baxter EJ, Scott LM, Campbell PJ et al (2005) Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet 365:1054–1061. https://doi.org/10.1016/S0140-6736(05)71142-9 - PubMed
  4. Kralovics R, Passamonti F, Buser AS et al (2005) A Gain-of-Function Mutation of JAK2 in Myeloproliferative Disorders. N Engl J Med 352:1779–1790. https://doi.org/10.1056/NEJMoa051113 - PubMed
  5. Levine RL, Wadleigh M, Cools J et al (2005) Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell 7:387–397. https://doi.org/10.1016/j.ccr.2005.03.023 - PubMed
  6. James C, Ugo V, Le Couédic J-P et al (2005) A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature 434:1144–1148. https://doi.org/10.1038/nature03546 - PubMed
  7. Hubbard SR (2018) Mechanistic Insights into Regulation of JAK2 Tyrosine Kinase. Front Endocrinol (Lausanne) 8:361. https://doi.org/10.3389/fendo.2017.00361 - PubMed
  8. Bailey CJ, Turner RC (1996) Metformin. N Engl J Med 334:574–579. https://doi.org/10.1056/NEJM199602293340906 - PubMed
  9. Pollak M (2010) Metformin and Other Biguanides in Oncology: Advancing the Research Agenda. Cancer Prev Res 3:1060–1065. https://doi.org/10.1158/1940-6207.CAPR-10-0175 - PubMed
  10. Neto EMR, Marques LARV, Ferreira MAD et al (2015) Metformina: Uma Revisão da Literatura. Saúde e Pesqui 8:355–362. https://doi.org/10.17765/2176-9206.2015V8N2P355-362 - PubMed
  11. Dykens JA, Jamieson J, Marroquin L et al (2008) Biguanide-induced mitochondrial dysfunction yields increased lactate production and cytotoxicity of aerobically-poised HepG2 cells and human hepatocytes in vitro. Toxicol Appl Pharmacol 233:203–210. https://doi.org/10.1016/j.taap.2008.08.013 - PubMed
  12. Kuntz EM, Baquero P, Michie AM et al (2017) Targeting mitochondrial oxidative phosphorylation eradicates therapy-resistant chronic myeloid leukemia stem cells. Nat Med 23:1234–1240. https://doi.org/10.1038/nm.4399 - PubMed
  13. Kawashima I, Kirito K (2016) Metformin inhibits JAK2V617F activity in MPN cells by activating AMPK and PP2A complexes containing the B56α subunit. Exp Hematol 44:1156-1165.e4. https://doi.org/10.1016/j.exphem.2016.08.005 - PubMed
  14. Machado-Neto JA, Fenerich BA, Scopim-Ribeiro R et al (2018) Metformin exerts multitarget antileukemia activity in JAK2V617F-positive myeloproliferative neoplasms. Cell Death Dis 9:311. https://doi.org/10.1038/s41419-017-0256-4 - PubMed
  15. Coelho-Silva JL, Bianco TM, Silva ABA et al (2019) Metformin Suppress Cellular and Molecular Processes Related to Maintenance and Proliferation of Myeloproliferative Neoplasm Stem Cell. Blood 134:1682–1682. https://doi.org/10.1182/blood-2019-132115 - PubMed
  16. Orecchioni S, Reggiani F, Talarico G et al (2015) The biguanides metformin and phenformin inhibit angiogenesis, local and metastatic growth of breast cancer by targeting both neoplastic and microenvironment cells. Int J Cancer 136:E534–E544. https://doi.org/10.1002/ijc.29193 - PubMed
  17. Somlyai G, Collins TQ, Meuillet EJ et al (2017) Structural homologies between phenformin, lipitor and gleevec aim the same metabolic oncotarget in leukemia and melanoma. Oncotarget 8:50187–50192. https://doi.org/10.18632/oncotarget.16238 - PubMed
  18. Yuan P, Ito K, Perez-Lorenzo R et al (2013) Phenformin enhances the therapeutic benefit of BRAFV600E inhibition in melanoma. Proc Natl Acad Sci 110:18226–18231. https://doi.org/10.1073/pnas.1317577110 - PubMed
  19. Hu S, Ouyang Q, Cheng Q et al (2018) Phenformin inhibits cell proliferation and induces cell apoptosis and autophagy in cholangiocarcinoma. Mol Med Rep 17:6028–6032. https://doi.org/10.3892/mmr.2018.8573 - PubMed
  20. Guo Z, Zhao M, Howard EW et al (2017) Phenformin inhibits growth and epithelial-mesenchymal transition of ErbB2-overexpressing breast cancer cells through targeting the IGF1R pathway. Oncotarget 8. https://doi.org/10.18632/oncotarget.19466 - PubMed
  21. Velez J, Pan R, Lee JTC et al (2016) Biguanides sensitize leukemia cells to ABT-737-induced apoptosis by inhibiting mitochondrial electron transport. Oncotarget 7:51435–51449. https://doi.org/10.18632/oncotarget.9843 - PubMed
  22. Vara-Ciruelos D, Dandapani M, Russell FM et al (2019) Phenformin, But Not Metformin, Delays Development of T Cell Acute Lymphoblastic Leukemia/Lymphoma via Cell-Autonomous AMPK Activation. Cell Rep 27:690-698.e4. https://doi.org/10.1016/j.celrep.2019.03.067 - PubMed
  23. Veiga SR, Ge X, Mercer CA et al (2018) Phenformin-Induced Mitochondrial Dysfunction Sensitizes Hepatocellular Carcinoma for Dual Inhibition of mTOR. Clin Cancer Res 24:3767–3780. https://doi.org/10.1158/1078-0432.CCR-18-0177 - PubMed
  24. Segal ED, Yasmeen A, Beauchamp M-C et al (2011) Relevance of the OCT1 transporter to the antineoplastic effect of biguanides. Biochem Biophys Res Commun 414:694–699. https://doi.org/10.1016/j.bbrc.2011.09.134 - PubMed
  25. Lamhonwah A-M, Tein I (2006) Novel localization of OCTN1, an organic cation/carnitine transporter, to mammalian mitochondria. Biochem Biophys Res Commun 345:1315–1325. https://doi.org/10.1016/j.bbrc.2006.05.026 - PubMed
  26. McGuinness ME, Talbert RL (1993) Phenformin-Induced Lactic Acidosis: A Forgotten Adverse Drug Reaction. Ann Pharmacother 27:1183–1187. https://doi.org/10.1177/106002809302701004 - PubMed
  27. WILLIAMS RH (1975) Farewell to Phenformin for Treating Diabetes Mellitus. Ann Intern Med 83:567. https://doi.org/10.7326/0003-4819-83-4-567 - PubMed
  28. Nattrass M, Todd PG, Hinks L et al (1977) Comparative effects of phenformin, metformin and glibenclamide on metabolic rhythms in maturity-onset diabetics. Diabetologia 13:145–152. https://doi.org/10.1007/BF00745143 - PubMed
  29. Baker NC, Ekins S, Williams AJ, Tropsha A (2018) A bibliometric review of drug repurposing. Drug Discov Today 23:661–672. https://doi.org/10.1016/j.drudis.2018.01.018 - PubMed
  30. Wang Y, Meng Y, Zhang S et al (2018) Phenformin and metformin inhibit growth and migration of LN229 glioma cells in vitro and in vivo. Onco Targets Ther 11:6039–6048. https://doi.org/10.2147/OTT.S168981 - PubMed
  31. Cook DE (1978) The effects of phenformin in normal vs. diabetic isolated perfused rat liver. Res Commun Chem Pathol Pharmacol 22:119–134 - PubMed
  32. Dietze G, Wicklmayr M, Mehnert H et al (1978) Effect of phenformin on hepatic balances of gluconeogenic substrates in man. Diabetologia 14:243–248. https://doi.org/10.1007/BF01219423 - PubMed
  33. Schlienger JL, Frick A, Marbach J et al (1979) Effects of biguanides on the intermediate metabolism of glucose in normal and portal-strictured rats. Diabete Metab 5:5–9 - PubMed
  34. Shih Y-R, Kang H, Rao V et al (2017) In vivo engineering of bone tissues with hematopoietic functions and mixed chimerism. Proc Natl Acad Sci 114:5419–5424. https://doi.org/10.1073/pnas.1702576114 - PubMed
  35. Busch K, Klapproth K, Barile M et al (2015) Fundamental properties of unperturbed haematopoiesis from stem cells in vivo. Nature 518:542–546. https://doi.org/10.1038/nature14242 - PubMed
  36. Zhang Q-S, Tang W, Deater M et al (2016) Metformin improves defective hematopoiesis and delays tumor formation in Fanconi anemia mice. Blood 128:2774. https://doi.org/10.1182/BLOOD-2015-11-683490 - PubMed
  37. Pollard JA, Furutani EM, Liu S et al (2021) Metformin for Treatment of Cytopenias in Children and Young Adults with Fanconi Anemia. Blood 138:1102–1102. https://doi.org/10.1182/blood-2021-153598 - PubMed
  38. Uozumi K, Otsuka M, Ohno N et al (2000) Establishment and characterization of a new human megakaryoblastic cell line (SET-2) that spontaneously matures to megakaryocytes and produces platelet-like particles. Leukemia 14:142–152. https://doi.org/10.1038/sj.leu.2401608 - PubMed
  39. Koulnis M, Pop R, Porpiglia E et al (2011) Identification and Analysis of Mouse Erythroid Progenitors using the CD71/TER119 Flow-cytometric Assay. J Vis Exp. https://doi.org/10.3791/2809 - PubMed
  40. Challen GA, Boles N, Lin K-YK, Goodell MA (2009) Mouse hematopoietic stem cell identification and analysis. Cytom Part A 75A:14–24. https://doi.org/10.1002/cyto.a.20674 - PubMed

Publication Types