Display options
Share it on

FEBS Open Bio. 2021 Jul;11(7):1867-1892. doi: 10.1002/2211-5463.13143. Epub 2021 May 28.

Mass spectrometry-based top-down and bottom-up approaches for proteomic analysis of the Moroccan Buthus occitanus scorpion venom.

FEBS open bio

Khadija Daoudi, Christian Malosse, Ayoub Lafnoune, Bouchra Darkaoui, Salma Chakir, Jean-Marc Sabatier, Julia Chamot-Rooke, Rachida Cadi, Naoual Oukkache

Affiliations

  1. Laboratory of Venoms and Toxins, Pasteur Institute of Morocco, Casablanca, Morocco.
  2. Laboratory of Molecular Genetics, Physiopathology and Biotechnology, Faculty of Sciences Ain Chock, Hassan II University of Casablanca, Morocco.
  3. Mass spectrometry for Biology Unit, Institut Pasteur, CNRS USR 2000, Paris, France.
  4. Laboratory INSERM UMR 1097, University of Aix Marseille, France.

PMID: 33715301 PMCID: PMC8255848 DOI: 10.1002/2211-5463.13143

Abstract

Buthus occitanus (B. occitanus) is one of the most dangerous scorpions in the world. Despite the involvement of B. occitanus scorpion in severe cases of envenomation in Morocco, no study has focused yet on the proteomic composition of the Moroccan B. occitanus scorpion venom. Mass spectrometry-based proteomic techniques are commonly used in the study of scorpion venoms. The implementation of top-down and bottom-up approaches for proteomic analyses facilitates screening by allowing a global view of the structural aspects of such complex matrices. Here, we provide a partial overview of the venom of B. occitanus scorpion, in order to explore the diversity of its toxins and hereafter understand their effects. To this end, a combination of top-down and bottom-up approaches was applied using nano-high liquid chromatography coupled to nano-electrospray tandem mass spectrometry (nano-LC-ESI MS/MS). The LC-MS results showed that B. occitanus venom contains around 200 molecular masses ranging from 1868 to 16 720 Da, the most representative of which are those between 5000 and 8000 Da. Interestingly, combined top-down and bottom-up LC-MS/MS results allowed the identification of several toxins, which were mainly those acting on ion channels, including those targeting sodium (NaScTxs), potassium (KScTxs), chloride (ClScTxs), and calcium channels (CaScTx), as well as antimicrobial peptides (AMPs), amphipathic peptides, myotropic neuropeptides, and hypothetical secreted proteins. This study reveals the molecular diversity of B. occitanus scorpion venom and identifies components that may have useful pharmacological activities.

© 2021 The Authors. FEBS Open Bio published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.

Keywords: Buthus occitanus scorpion; bottom-up; top-down; toxins; venom; venomic

References

  1. Arch Biochem Biophys. 2001 Jul 15;391(2):197-206 - PubMed
  2. Toxins (Basel). 2019 Apr 10;11(4): - PubMed
  3. Eur J Biochem. 1998 May 15;254(1):44-9 - PubMed
  4. J Proteome Res. 2013 Jul 5;12(7):3460-70 - PubMed
  5. Sci Data. 2017 Jul 11;4:170090 - PubMed
  6. Toxicon. 1996 Sep;34(9):987-1001 - PubMed
  7. J Venom Anim Toxins Incl Trop Dis. 2017 Oct 18;23:44 - PubMed
  8. Am J Physiol. 1993 Feb;264(2 Pt 1):C361-9 - PubMed
  9. Glia. 2002 Aug;39(2):162-73 - PubMed
  10. J Proteomics. 2016 Sep 2;146:148-64 - PubMed
  11. Am J Trop Med Hyg. 2000 Feb;62(2):277-83 - PubMed
  12. J Immunol. 1997 Jun 1;158(11):5120-8 - PubMed
  13. Toxicon. 2008 Oct;52(5):611-8 - PubMed
  14. Eur J Biochem. 1997 Jan 15;243(1-2):93-9 - PubMed
  15. Toxicon. 2013 Mar 1;63:44-54 - PubMed
  16. J Venom Anim Toxins Incl Trop Dis. 2013 Mar 28;19(1):5 - PubMed
  17. J Neurosci. 2002 Mar 15;22(6):2023-34 - PubMed
  18. Drug Des Devel Ther. 2012;6:165-73 - PubMed
  19. Toxicon. 2005 Dec 15;46(8):831-44 - PubMed
  20. PLoS One. 2012;7(7):e40135 - PubMed
  21. Proteomics. 2006 Jun;6(12):3718-27 - PubMed
  22. Biochimie. 2001 Sep;83(9):883-9 - PubMed
  23. Cell Mol Life Sci. 2008 Oct;65(19):3081-92 - PubMed
  24. Heliyon. 2017 Jan 05;3(1):e00221 - PubMed
  25. Anal Chem. 2016 Jan 5;88(1):95-121 - PubMed
  26. Toxicon. 2011 Jan;57(1):84-92 - PubMed
  27. J Proteome Res. 2020 Apr 3;19(4):1731-1749 - PubMed
  28. Toxicon. 2018 Jul;149:26-36 - PubMed
  29. Toxins (Basel). 2013 Dec 13;5(12):2456-87 - PubMed
  30. J Venom Anim Toxins Incl Trop Dis. 2014 Nov 03;20(1):48 - PubMed
  31. Toxins (Basel). 2019 Apr 30;11(5): - PubMed
  32. Bioorg Khim. 1985 Nov;11(11):1445-56 - PubMed
  33. Peptides. 2012 Jun;35(2):291-9 - PubMed
  34. Eur J Biochem. 1987 Feb 2;162(3):589-99 - PubMed
  35. Protein Cell. 2011 Jun;2(6):437-44 - PubMed
  36. Mol Cancer. 2014 Aug 13;13:191 - PubMed
  37. Acta Trop. 2016 Jan;153:70-8 - PubMed
  38. Mol Cell Proteomics. 2016 Jul;15(7):2423-34 - PubMed
  39. Toxicon. 2013 Nov;74:193-207 - PubMed
  40. Insect Biochem Mol Biol. 2004 Nov;34(11):1141-6 - PubMed
  41. Mol Pharmacol. 2012 Sep;82(3):372-82 - PubMed
  42. Toxicon. 2006 May;47(6):676-87 - PubMed
  43. Anal Chem. 1996 Mar 1;68(5):850-8 - PubMed
  44. Rapid Commun Mass Spectrom. 2019 May;33 Suppl 1:20-27 - PubMed
  45. Toxins (Basel). 2018 Apr 18;10(4): - PubMed
  46. J Comp Neurol. 2005 Sep 12;490(1):57-71 - PubMed
  47. PLoS One. 2015 Feb 06;10(2):e0117188 - PubMed
  48. Toxicon. 2018 Sep 1;151:47-62 - PubMed
  49. Toxicon. 1997 Mar;35(3):365-82 - PubMed
  50. Toxicon. 2007 Sep 1;50(3):428-37 - PubMed
  51. Biochem Biophys Res Commun. 2008 Jul 4;371(3):515-20 - PubMed
  52. Nat Methods. 2012 Nov;9(11):1065-6 - PubMed
  53. PLoS One. 2015 Jun 01;10(6):e0125908 - PubMed
  54. Nat Methods. 2013 Mar;10(3):186-7 - PubMed
  55. Proteomics. 2012 Jan;12(2):313-28 - PubMed
  56. Toxins (Basel). 2019 Aug 27;11(9): - PubMed
  57. Toxicon. 2014 Nov;90:337-43 - PubMed
  58. Toxins (Basel). 2014 Jun 12;6(6):1873-81 - PubMed
  59. Toxicon. 2014 Mar;79:55-63 - PubMed
  60. Rapid Commun Mass Spectrom. 2001;15(17):1562-72 - PubMed
  61. Int J Mol Sci. 2019 Jan 31;20(3): - PubMed
  62. Biochem Biophys Res Commun. 2002 Dec 13;299(4):562-8 - PubMed
  63. J Proteomics. 2018 Mar 20;175:3-4 - PubMed
  64. Eur J Biochem. 1999 Sep;264(2):287-300 - PubMed

Publication Types