Display options
Share it on

Mol Cell Proteomics. 2021;20:100074. doi: 10.1016/j.mcpro.2021.100074. Epub 2021 Mar 20.

Domain Mapping of Chondroitin/Dermatan Sulfate Glycosaminoglycans Enables Structural Characterization of Proteoglycans.

Molecular & cellular proteomics : MCP

Andrea Persson, Mahnaz Nikpour, Egor Vorontsov, Jonas Nilsson, Göran Larson

Affiliations

  1. Department of Laboratory Medicine, Sahlgrenska Academy at the University of Gothenburg, Sweden. Electronic address: [email protected].
  2. Department of Laboratory Medicine, Sahlgrenska Academy at the University of Gothenburg, Sweden.
  3. Proteomics Core Facility, Sahlgrenska Academy at the University of Gothenburg, Sweden.
  4. Department of Laboratory Medicine, Sahlgrenska Academy at the University of Gothenburg, Sweden; Proteomics Core Facility, Sahlgrenska Academy at the University of Gothenburg, Sweden; Laboratory of Clinical Chemistry, Sahlgrenska University Hospital, Västra Götaland Region, Sweden.
  5. Department of Laboratory Medicine, Sahlgrenska Academy at the University of Gothenburg, Sweden; Laboratory of Clinical Chemistry, Sahlgrenska University Hospital, Västra Götaland Region, Sweden. Electronic address: [email protected].

PMID: 33757834 PMCID: PMC8724862 DOI: 10.1016/j.mcpro.2021.100074

Abstract

Of all posttranslational modifications known, glycosaminoglycans (GAGs) remain one of the most challenging to study, and despite the recent years of advancement in MS technologies and bioinformatics, detailed knowledge about the complete structures of GAGs as part of proteoglycans (PGs) is limited. To address this issue, we have developed a protocol to study PG-derived GAGs. Chondroitin/dermatan sulfate conjugates from the rat insulinoma cell line, INS-1832/13, known to produce primarily the PG chromogranin-A, were enriched by anion-exchange chromatography after pronase digestion. Following benzonase and hyaluronidase digestions, included in the sample preparation due to the apparent interference from oligonucleotides and hyaluronic acid in the analysis, the GAGs were orthogonally depolymerized and analyzed using nano-flow reversed-phase LC-MS/MS in negative mode. To facilitate the data interpretation, we applied an automated LC-MS peak detection and intensity measurement via the Proteome Discoverer software. This approach effectively provided a detailed structural description of the nonreducing end, internal, and linkage region domains of the CS/DS of chromogranin-A. The copolymeric CS/DS GAGs constituted primarily consecutive glucuronic-acid-containing disaccharide units, or CS motifs, of which the N-acetylgalactosamine residues were 4-O-sulfated, interspersed by single iduronic-acid-containing disaccharide units. Our data suggest a certain heterogeneity of the GAGs due to the identification of not only CS/DS GAGs but also of GAGs entirely of CS character. The presented protocol allows for the detailed characterization of PG-derived GAGs, which may greatly increase the knowledge about GAG structures in general and eventually lead to better understanding of how GAG structures are related to biological functions.

Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.

Keywords: LC-MS/MS; chondroitin/dermatan sulfate (CS/DS); glycan; glycomics; higher-energy collision dissociation (HCD); mass spectrometry (MS)

Conflict of interest statement

Conflict of interest The authors declare no competing interests.

References

  1. J Biol Chem. 2016 Jul 8;291(28):14871-82 - PubMed
  2. Adv Pharmacol. 2006;53:187-215 - PubMed
  3. Carbohydr Polym. 2017 Feb 20;158:85-92 - PubMed
  4. J Biol Chem. 2018 Jun 29;293(26):10202-10219 - PubMed
  5. PLoS One. 2015 Oct 21;10(10):e0140279 - PubMed
  6. Histochem J. 1992 Sep;24(9):679-84 - PubMed
  7. Nat Protoc. 2014 Mar;9(3):541-58 - PubMed
  8. Mol Cell Proteomics. 2015 Jan;14(1):41-9 - PubMed
  9. Cell. 2001 Aug 24;106(4):499-509 - PubMed
  10. J Am Chem Soc. 2017 Nov 22;139(46):16986-16995 - PubMed
  11. ACS Chem Biol. 2015 May 15;10(5):1303-10 - PubMed
  12. Ann N Y Acad Sci. 2019 Nov;1455(1):34-58 - PubMed
  13. J Biol Chem. 2004 Oct 8;279(41):42732-41 - PubMed
  14. Nucleic Acids Res. 2016 Jan 4;44(D1):D447-56 - PubMed
  15. Biochim Biophys Acta. 2013 Oct;1830(10):4719-33 - PubMed
  16. Anal Bioanal Chem. 2019 Jul;411(17):3731-3741 - PubMed
  17. ACS Omega. 2019 Sep 09;4(13):15337-15347 - PubMed
  18. Glycobiology. 2015 Dec;25(12):1323-4 - PubMed
  19. Mol Cell Proteomics. 2018 Aug;17(8):1578-1590 - PubMed
  20. Connect Tissue Res. 1982;9(4):247-8 - PubMed
  21. J Histochem Cytochem. 2021 Feb;69(2):121-135 - PubMed
  22. Biochim Biophys Acta. 1970 Mar 18;198(3):607-9 - PubMed
  23. Gastroenterology. 1985 Dec;89(6):1248-57 - PubMed
  24. J Mol Biol. 2003 May 2;328(3):623-34 - PubMed
  25. Glycobiology. 2021 Feb 9;31(2):103-115 - PubMed
  26. Sci Rep. 2020 Feb 26;10(1):3506 - PubMed
  27. Mol Cell Proteomics. 2015 Dec;14(12):3118-31 - PubMed
  28. J Biol Chem. 2018 Jan 5;293(1):379-389 - PubMed
  29. J Diabetes Investig. 2020 Jul;11(4):865-873 - PubMed
  30. Bioinformatics. 2018 Oct 15;34(20):3511-3518 - PubMed
  31. FEBS J. 2013 May;280(10):2447-61 - PubMed
  32. Nat Commun. 2020 Apr 20;11(1):1881 - PubMed
  33. Eur J Biochem. 1992 Apr 1;205(1):277-86 - PubMed
  34. J Am Soc Mass Spectrom. 2000 Oct;11(10):916-20 - PubMed
  35. PLoS One. 2012;7(9):e45474 - PubMed
  36. J Proteome Res. 2013 Dec 6;12(12):5558-69 - PubMed
  37. Pharmaceuticals (Basel). 2018 Feb 27;11(1): - PubMed
  38. Nat Chem Biol. 2011 Oct 09;7(11):827-33 - PubMed
  39. Glycobiol Insights. 2010 Feb 9;2010(2):13-28 - PubMed
  40. Sci Rep. 2016 Oct 03;6:34537 - PubMed
  41. J Proteomics. 2020 Mar 20;215:103669 - PubMed
  42. Anal Chem. 1996 Jul 1;68(13):1989-99 - PubMed
  43. J Biol Chem. 1997 Apr 4;272(14):9123-30 - PubMed
  44. Biochem J. 1975 Feb;145(2):397-400 - PubMed
  45. J Histochem Cytochem. 2012 Dec;60(12):916-25 - PubMed

Publication Types