Display options
Share it on

Genome Biol Evol. 2022 Jan 04;14(1). doi: 10.1093/gbe/evab104.

Mutational Signatures of Replication Timing and Epigenetic Modification Persist through the Global Divergence of Mutation Spectra across the Great Ape Phylogeny.

Genome biology and evolution

Michael E Goldberg, Kelley Harris

Affiliations

  1. Department of Genome Sciences, University of Washington, Seattle, Washington, USA.
  2. Computational Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA.

PMID: 33983415 PMCID: PMC8743035 DOI: 10.1093/gbe/evab104

Abstract

Great ape clades exhibit variation in the relative mutation rates of different three-base-pair genomic motifs, with closely related species having more similar mutation spectra than distantly related species. This pattern cannot be explained by classical demographic or selective forces, but imply that DNA replication fidelity has been perturbed in different ways on each branch of the great ape phylogeny. Here, we use whole-genome variation from 88 great apes to investigate whether these species' mutation spectra are broadly differentiated across the entire genome, or whether mutation spectrum differences are driven by DNA compartments that have particular functional features or chromatin states. We perform principal component analysis (PCA) and mutational signature deconvolution on mutation spectra ascertained from compartments defined by features including replication timing and ancient repeat content, finding evidence for consistent species-specific mutational signatures that do not depend on which functional compartments the spectra are ascertained from. At the same time, we find that many compartments have their own characteristic mutational signatures that appear stable across the great ape phylogeny. For example, in a mutation spectrum PCA compartmentalized by replication timing, the second principal component explaining 21.2% of variation separates all species' late-replicating regions from their early-replicating regions. Our results suggest that great ape mutation spectrum evolution is not driven by epigenetic changes that modify mutation rates in specific genomic regions, but instead by trans-acting mutational modifiers that affect mutagenesis across the whole genome fairly uniformly.

© The Author(s) 2021. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

Keywords: chromatin landscape; great ape evolution; hydroxymethylation; mutation spectrum; mutational signatures; replication timing

References

  1. Nature. 2017 Sep 28;549(7673):519-522 - PubMed
  2. Mol Cell. 2017 Dec 7;68(5):955-969.e10 - PubMed
  3. Nat Rev Genet. 2012 Jul 18;13(8):565-75 - PubMed
  4. Nature. 2015 Oct 1;526(7571):68-74 - PubMed
  5. Am J Hum Genet. 2012 Dec 7;91(6):1033-40 - PubMed
  6. Nature. 2013 Jul 25;499(7459):471-5 - PubMed
  7. Nature. 2015 Feb 19;518(7539):360-364 - PubMed
  8. Curr Opin Genet Dev. 2014 Apr;25:93-100 - PubMed
  9. Genetics. 1999 Jun;152(2):675-83 - PubMed
  10. Nature. 2012 Aug 23;488(7412):504-7 - PubMed
  11. Nat Rev Genet. 2012 Oct;13(10):745-53 - PubMed
  12. Genomics. 1992 Aug;13(4):1095-107 - PubMed
  13. Nat Genet. 2019 Sep;51(9):1321-1329 - PubMed
  14. Nat Ecol Evol. 2019 Feb;3(2):286-292 - PubMed
  15. Proc Natl Acad Sci U S A. 2021 May 25;118(21): - PubMed
  16. Nat Genet. 2016 Apr;48(4):349-55 - PubMed
  17. Genetics. 2008 Oct;180(2):933-43 - PubMed
  18. Genome Biol Evol. 2011;3:842-50 - PubMed
  19. Nat Commun. 2018 Sep 14;9(1):3753 - PubMed
  20. Cell. 2012 Jun 8;149(6):1368-80 - PubMed
  21. Genome Biol. 2011;12(3):R27 - PubMed
  22. Genetics. 2001 Oct;159(2):907-11 - PubMed
  23. Cell. 2012 Dec 21;151(7):1431-42 - PubMed
  24. PLoS Genet. 2014 Sep 11;10(9):e1004585 - PubMed
  25. Nat Genet. 2009 Apr;41(4):393-5 - PubMed
  26. Proc Natl Acad Sci U S A. 2015 Mar 17;112(11):3439-44 - PubMed
  27. Mol Cell. 2002 Nov;10(5):1247-53 - PubMed
  28. Genome Res. 2014 Nov;24(11):1740-50 - PubMed
  29. BMC Genomics. 2018 Nov 28;19(1):845 - PubMed
  30. Bioessays. 1985 Jul;3(1):9-14 - PubMed
  31. Mol Biol Evol. 2017 May 1;34(5):1100-1109 - PubMed
  32. Nature. 2012 May 3;485(7396):95-8 - PubMed
  33. Proc Natl Acad Sci U S A. 2008 Jul 22;105(29):10051-6 - PubMed
  34. Proc Natl Acad Sci U S A. 2019 Sep 3;116(36):17916-17924 - PubMed
  35. Proc Natl Acad Sci U S A. 2004 Sep 28;101(39):14162-7 - PubMed
  36. Am J Hum Genet. 1992 Jul;51(1):17-37 - PubMed
  37. Nature. 2010 Oct 28;467(7319):1099-103 - PubMed
  38. Sci Data. 2016 Sep 13;3:160075 - PubMed
  39. Nat Rev Genet. 2011 Oct 04;12(11):756-66 - PubMed
  40. Genetics. 2011 Apr;187(4):1153-61 - PubMed
  41. Nature. 1987 Mar 5-11;326(6108):93-6 - PubMed
  42. Genome Res. 2018 Dec;28(12):1767-1778 - PubMed
  43. Nat Commun. 2020 Mar 13;11(1):1363 - PubMed
  44. Nat Methods. 2012 Feb 28;9(3):215-6 - PubMed
  45. Proc Natl Acad Sci U S A. 2004 Sep 28;101(39):13994-4001 - PubMed
  46. Nat Commun. 2013;4:1502 - PubMed
  47. Elife. 2017 Apr 25;6: - PubMed
  48. J Mol Biol. 1987 Jul 20;196(2):261-82 - PubMed
  49. Am J Hum Genet. 2003 Jun;72(6):1527-35 - PubMed
  50. Nature. 2013 Aug 22;500(7463):415-21 - PubMed
  51. Genome Res. 2013 Sep;23(9):1373-82 - PubMed
  52. Proc Natl Acad Sci U S A. 2019 May 7;116(19):9491-9500 - PubMed
  53. Proc Biol Sci. 1993 Jun 22;252(1335):237-43 - PubMed
  54. Genome Res. 2005 Sep;15(9):1222-31 - PubMed
  55. Nat Rev Genet. 2016 Oct 14;17(11):704-714 - PubMed
  56. Genome Biol. 2008 Apr 30;9(4):R76 - PubMed
  57. Curr Biol. 2018 Oct 8;28(19):3193-3197.e5 - PubMed

Publication Types

Grant support