Display options
Share it on

J Gerontol A Biol Sci Med Sci. 2021 Sep 13;76(10):e299-e306. doi: 10.1093/gerona/glab151.

Mobility of Older Adults: Gait Quality Measures Are Associated With Life-Space Assessment Scores.

The journals of gerontology. Series A, Biological sciences and medical sciences

Anisha Suri, Andrea L Rosso, Jessie VanSwearingen, Leslie M Coffman, Mark S Redfern, Jennifer S Brach, Ervin Sejdić

Affiliations

  1. Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, Pennsylvania, USA.
  2. Department of Epidemiology, School of Public Health, University of Pittsburgh, Pennsylvania, USA.
  3. Department of Physical Therapy, School of Rehabilitation Sciences, University of Pittsburgh, Pennsylvania, USA.
  4. Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pennsylvania, USA.

PMID: 34038537 PMCID: PMC8436978 DOI: 10.1093/gerona/glab151

Abstract

BACKGROUND: The relation of gait quality to real-life mobility among older adults is poorly understood. This study examined the association between gait quality, consisting of step variability, smoothness, regularity, symmetry, and gait speed, and the Life-Space Assessment (LSA).

METHOD: In community-dwelling older adults (N = 232, age 77.5 ± 6.6, 65% females), gait quality was derived from (i) an instrumented walkway: gait speed, variability, and walk ratio and (ii) accelerometer: signal variability, smoothness, regularity, symmetry, and time-frequency spatiotemporal variables during 6-minute walk. In addition to collecting LSA scores, cognitive functioning, walking confidence, and falls were recorded. Spearman correlations (speed as covariate) and random forest regression were used to assess associations between gait quality and LSA, and Gaussian mixture modeling (GMM) was used to cluster participants.

RESULTS: Spearman correlations of ρ p = .11 (signal amplitude variability mediolateral [ML] axis), ρ p = .15 and ρ p = -.13 (symmetry anterior-posterior-vertical [AP-V] and ML-AP axes, respectively), ρ p = .16 (power V), and ρ = .26 (speed), all p <.05 and marginally related, ρ p = -.12 (regularity V), ρ p = .11 (smoothness AP), and ρ p = -.11 (step-time variability), all p <.1, were obtained. The cross-validated random forest model indicated good-fit LSA prediction error of 17.77; gait and cognition were greater contributors than age and gender. GMM indicated 2 clusters. Group 1 (n = 189) had better gait quality than group 2 (n = 43): greater smoothness AP (2.94 ± 0.75 vs 2.30 ± 0.71); greater similarity AP-V (.58 ± .13 vs .40 ± .19); lower regularity V (0.83 ± 0.08 vs 0.87 ± 0.10); greater power V (1.86 ± 0.18 vs 0.97 ± 1.84); greater speed (1.09 ± 0.16 vs 1.00 ± 0.16 m/s); lower step-time coefficient of variation (3.70 ± 1.09 vs 5.09 ± 2.37), and better LSA (76 ± 18 vs 67 ± 18), padjusted < .004.

CONCLUSIONS: Gait quality measures taken in the clinic are associated with real-life mobility in the community.

© The Author(s) 2021. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: [email protected].

Keywords: Community mobility; Gait accelerometry; Gaussian mixture model; Walkway gait analysis system; random forest regressor

References

  1. J Gerontol A Biol Sci Med Sci. 2014 Nov;69(11):1429-36 - PubMed
  2. Phys Ther. 2005 Oct;85(10):1008-119 - PubMed
  3. Arch Phys Med Rehabil. 2008 Dec;89(12):2293-6 - PubMed
  4. Gait Posture. 2004 Jun;19(3):288-97 - PubMed
  5. Am J Respir Crit Care Med. 2002 Jul 1;166(1):111-7 - PubMed
  6. J Soc Work Disabil Rehabil. 2014;13(3):261-77 - PubMed
  7. Gait Posture. 2014;39(1):553-7 - PubMed
  8. BMC Geriatr. 2018 Sep 24;18(1):227 - PubMed
  9. JAMA. 2011 Jan 5;305(1):50-8 - PubMed
  10. Phys Ther. 2012 Feb;92(2):318-28 - PubMed
  11. Contemp Clin Trials. 2020 Feb;89:105912 - PubMed
  12. Exp Brain Res. 2015 Dec;233(12):3467-74 - PubMed
  13. J Gerontol A Biol Sci Med Sci. 2011 Jan;66(1):136-41 - PubMed
  14. Int J Rehabil Res. 2011 Sep;34(3):265-9 - PubMed
  15. Sensors (Basel). 2021 Jan 26;21(3): - PubMed
  16. Math Biosci Eng. 2019 Jul 4;16(6):6242-6256 - PubMed
  17. J Int Neuropsychol Soc. 2009 May;15(3):438-50 - PubMed
  18. Nat Mach Intell. 2020 Jan;2(1):56-67 - PubMed
  19. Phys Ther. 2012 Oct;92(10):1268-77 - PubMed
  20. J Neuroeng Rehabil. 2005 Jul 20;2:19 - PubMed
  21. JMIR Mhealth Uhealth. 2016 Jun 07;4(2):e56 - PubMed
  22. J Gerontol B Psychol Sci Soc Sci. 2006 Sep;61(5):P270-7 - PubMed
  23. Mov Disord. 2009 Jan 30;24(2):261-7 - PubMed
  24. J Am Geriatr Soc. 2019 Mar;67(3):565-569 - PubMed
  25. Curr Aging Sci. 2011 Dec;4(3):184-91 - PubMed
  26. J Gerontol A Biol Sci Med Sci. 2018 May 9;73(6):835-839 - PubMed
  27. J Aging Health. 2013 Jun;25(4):617-37 - PubMed
  28. Gerontologist. 2010 Aug;50(4):443-50 - PubMed
  29. J Geriatr Phys Ther. 2008;31(1):24-31 - PubMed
  30. Front Aging Neurosci. 2019 Jan 29;11:10 - PubMed
  31. JAMA. 2014 May;311(20):2061-2 - PubMed
  32. Laryngoscope Investig Otolaryngol. 2019 Feb 04;4(1):143-153 - PubMed
  33. Gait Posture. 2012 Feb;35(2):272-6 - PubMed
  34. IEEE Trans Neural Syst Rehabil Eng. 2021;29:249-261 - PubMed
  35. IEEE Trans Neural Syst Rehabil Eng. 2014 May;22(3):603-12 - PubMed
  36. Neurorehabil Neural Repair. 2013 Oct;27(8):742-52 - PubMed
  37. Medicine (Baltimore). 2017 Mar;96(9):e5990 - PubMed
  38. Neurorehabil Neural Repair. 2011 Nov-Dec;25(9):810-8 - PubMed
  39. J Aging Health. 2013 Sep;25(6):907-20 - PubMed
  40. J Gerontol A Biol Sci Med Sci. 2003 May;58(5):M446-52 - PubMed
  41. J Am Geriatr Soc. 2016 Nov;64(11):2226-2234 - PubMed
  42. J Gerontol A Biol Sci Med Sci. 2015 May;70(5):608-15 - PubMed
  43. IEEE J Transl Eng Health Med. 2016;4: - PubMed
  44. J Neuroeng Rehabil. 2005 Jul 26;2:21 - PubMed
  45. Entropy (Basel). 2018 Aug 06;20(8): - PubMed
  46. Prev Med. 2009 Feb;48(2):108-14 - PubMed
  47. Telemed J E Health. 2012 May;18(4):292-6 - PubMed

Publication Types

Grant support