Display options
Share it on

Mol Biol Rep. 2022 Jan;49(1):755-759. doi: 10.1007/s11033-021-06872-2. Epub 2021 Nov 25.

The emerging roles of srGAPs in cancer.

Molecular biology reports

Vaishali Ji, Chandra Kishore

Affiliations

  1. Department of Botany, Patna Science College, Patna, 800005, India.
  2. Department of Hematology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Stem Cell Research Centre, Lucknow, 226014, Uttar Pradesh, India. [email protected].

PMID: 34825319 DOI: 10.1007/s11033-021-06872-2

Abstract

GTPase activating proteins (GAPs) were initially considered as the inhibitors of cell signaling pathways because of their nature to activate the intrinsic GTPase activity of the RhoGTPases. But recent studies of dysregulated GAPs in many cancers such as glioblastoma, colorectal cancer, breast cancer, and renal cancer have elucidated the important roles of GAPs in carcinogenesis and GAPs have been shown to perform multiple nonconventional functions in different contexts. We have discussed the recent developments in the roles played by different types of srGAPs (SLIT-ROBO Rho GTPase-activating proteins) in cancer.

© 2021. The Author(s), under exclusive licence to Springer Nature B.V.

Keywords: Cancer; GAPs; Rho-GDP; Rho-GTP; RhoGTPases; srGAPs

References

  1. Wennerberg K, Der CJ (2004) Rho-family GTPases: it’s not only Rac and Rho (and I like it). J Cell Sci 117:1301–1312. https://doi.org/10.1242/jcs.01118 - PubMed
  2. Tcherkezian J, Lamarche-Vane N (2007) Current knowledge of the large RhoGAP family of proteins. Biol Cell 99:67–86. https://doi.org/10.1042/BC20060086 - PubMed
  3. Pradhan R, Ngo PA, Martínez-Sánchez LDC et al (2021) Rho GTPases as key molecular players within intestinal mucosa and GI diseases. Cells 10:66. https://doi.org/10.3390/cells10010066 - PubMed
  4. Rodrigues P, Macaya I, Bazzocco S et al (2014) RHOA inactivation enhances Wnt signalling and promotes colorectal cancer. Nat Commun 5:5458. https://doi.org/10.1038/ncomms6458 - PubMed
  5. Kishore C, Sundaram S, Karunagaran D (2019) Vitamin K3 (menadione) suppresses epithelial-mesenchymal-transition and Wnt signaling pathway in human colorectal cancer cells. Chem Biol Interact 309:108725. https://doi.org/10.1016/j.cbi.2019.108725 - PubMed
  6. Sprang S (2001) GEFs: master regulators of G-protein activation. Trends Biochem Sci 26:266–267. https://doi.org/10.1016/S0968-0004(01)01818-7 - PubMed
  7. Scheffzek K, Ahmadian MR (2005) GTPase activating proteins: structural and functional insights 18 years after discovery. Cell Mol Life Sci 62:3014–3038. https://doi.org/10.1007/s00018-005-5136-x - PubMed
  8. Johnson JL, Erickson JW, Cerione RA (2009) New insights into how the Rho guanine nucleotide dissociation inhibitor regulates the interaction of Cdc42 with membranes. J Biol Chem 284:23860–23871. https://doi.org/10.1074/jbc.M109.031815 - PubMed
  9. Gutierrez-Uzquiza A, Colon-Gonzalez F, Leonard TA et al (2013) Coordinated activation of the Rac-GAP β2-chimaerin by an atypical proline-rich domain and diacylglycerol. Nat Commun 4:1849. https://doi.org/10.1038/ncomms2834 - PubMed
  10. Caloca MJ, Fernandez N, Lewin NE et al (1997) β2-chimaerin is a high affinity receptor for the phorbol ester tumor promoters *. J Biol Chem 272:26488–26496. https://doi.org/10.1074/jbc.272.42.26488 - PubMed
  11. Lahoz A, Hall A (2013) A tumor suppressor role for srGAP3 in mammary epithelial cells. Oncogene 32:4854–4860. https://doi.org/10.1038/onc.2012.489 - PubMed
  12. Marko TA, Shamsan GA, Edwards EN et al (2016) Slit-robo GTPase-activating protein 2 as a metastasis suppressor in osteosarcoma. Sci Rep 6:39059. https://doi.org/10.1038/srep39059 - PubMed
  13. Xu G, Lu X, Huang T, Fan J (2016) ARHGAP24 inhibits cell cycle progression, induces apoptosis and suppresses invasion in renal cell carcinoma. Oncotarget 7:51829–51839. https://doi.org/10.18632/oncotarget.10386 - PubMed
  14. Uehara S, Saito K, Asami H, Ohta Y (2017) Role of ARHGAP24 in ADP ribosylation factor 6 (ARF6)-dependent pseudopod formation in human breast carcinoma cells. Anticancer Res 37:4837–4844 - PubMed
  15. Dai X, Geng F, Dai J, et al (2018) Rho GTPase activating protein 24 (ARHGAP24) regulates the anti-cancer activity of sorafenib against breast cancer MDA-MB-231 cells via the signal transducer and activator of transcription 3 (STAT3) signaling pathway. Med Sci Monit 24:8669–8677. https://doi.org/10.12659/MSM.911394 - PubMed
  16. Koh S-B, Ross K, Isakoff SJ et al (2021) RASAL2 confers collateral MEK/EGFR dependency in chemoresistant triple-negative breast cancer. Clin Cancer Res 27:4883–4897. https://doi.org/10.1158/1078-0432.CCR-21-0714 - PubMed
  17. Feng M, Bao Y, Li Z et al (2014) RASAL2 activates RAC1 to promote triple-negative breast cancer progression. J Clin Invest 124:5291–5304. https://doi.org/10.1172/JCI76711 - PubMed
  18. Imaoka H, Toiyama Y, Saigusa S et al (2015) RacGAP1 expression, increasing tumor malignant potential, as a predictive biomarker for lymph node metastasis and poor prognosis in colorectal cancer. Carcinogenesis 36:346–354. https://doi.org/10.1093/carcin/bgu327 - PubMed
  19. Mi S, Lin M, Brouwer-Visser J et al (2016) RNA-seq identification of RACGAP1 as a metastatic driver in uterine carcinosarcoma. Clin Cancer Res 22:4676–4686. https://doi.org/10.1158/1078-0432.CCR-15-2116 - PubMed
  20. del Maldonado M, Dharmawardhane S (2018) Targeting rac and Cdc42 GTPases in cancer. Cancer Res 78:3101–3111. https://doi.org/10.1158/0008-5472.CAN-18-0619 - PubMed
  21. He Y, Northey JJ, Primeau M et al (2011) CdGAP is required for transforming growth factor β- and Neu/ErbB-2-induced breast cancer cell motility and invasion. Oncogene 30:1032–1045. https://doi.org/10.1038/onc.2010.477 - PubMed
  22. He Y, Northey JJ, Pelletier A et al (2017) The Cdc42/Rac1 regulator CdGAP is a novel E-cadherin transcriptional co-repressor with Zeb2 in breast cancer. Oncogene 36:3490–3503. https://doi.org/10.1038/onc.2016.492 - PubMed
  23. McHenry PR, Sears JC, Herrick MP et al (2010) P190B RhoGAP has pro-tumorigenic functions during MMTV-Neu mammary tumorigenesis and metastasis. Breast Cancer Res 12:R73. https://doi.org/10.1186/bcr2643 - PubMed
  24. Kang N, Matsui TS, Liu S et al (2020) Comprehensive analysis on the whole Rho-GAP family reveals that ARHGAP4 suppresses EMT in epithelial cells under negative regulation by Septin9. FASEB J 34:8326–8340. https://doi.org/10.1096/fj.201902750RR - PubMed
  25. Kazanietz MG, Caloca MJ (2017) The rac GTPase in cancer: from old concepts to new paradigms. Cancer Res 77:5445–5451. https://doi.org/10.1158/0008-5472.CAN-17-1456 - PubMed
  26. Casado-Medrano V, Baker MJ, Lopez-Haber C et al (2018) The role of Rac in tumor susceptibility and disease progression: from biochemistry to the clinic. Biochem Soc Trans 46:1003–1012. https://doi.org/10.1042/BST20170519 - PubMed
  27. Casado-Medrano V, Barrio-Real L, García-Rostán G, et al (2016) A new role of the Rac-GAP β2-chimaerin in cell adhesion reveals opposite functions in breast cancer initiation and tumor progression. Oncotarget 7:28301–28319. https://doi.org/10.18632/oncotarget.8597 - PubMed
  28. Kasuya K, Nagakawa Y, Hosokawa Y et al (2016) RhoA activity increases due to hypermethylation of ARHGAP28 in a highly liver-metastatic colon cancer cell line. Biomedical Reports 4:335–339. https://doi.org/10.3892/br.2016.582 - PubMed
  29. Chandra K (1969) Epigenetic regulation and promising therapies in colorectal cancer. Curr Mol Pharmacol 14:1–15 - PubMed
  30. Lawson CD, Ridley AJ (2018) Rho GTPase signaling complexes in cell migration and invasion. J Cell Biol 217:447–457. https://doi.org/10.1083/jcb.201612069 - PubMed
  31. Liang X, Kiru S, Gomez GA, Yap AS (2018) Regulated recruitment of SRGAP1 modulates RhoA signaling for contractility during epithelial junction maturation. Cytoskeleton 75:61–69. https://doi.org/10.1002/cm.21420 - PubMed
  32. Rogg M, Maier JI, Dotzauer R et al (2021) SRGAP1 controls small rho gtpases to regulate podocyte foot process maintenance. J Am Soc Nephrol 32:563–579. https://doi.org/10.1681/ASN.2020081126 - PubMed
  33. He H, Bronisz A, Liyanarachchi S et al (2013) SRGAP1 is a candidate gene for papillary thyroid carcinoma susceptibility. J Clin Endocrinol Metab 98:E973–E980. https://doi.org/10.1210/jc.2012-3823 - PubMed
  34. Feng Y, Feng L, Yu D et al (2016) srGAP1 mediates the migration inhibition effect of Slit2-Robo1 in colorectal cancer. J Exp Clin Cancer Res 35:191. https://doi.org/10.1186/s13046-016-0469-x - PubMed
  35. Huang T, Zhou Y, Zhang J et al (2018) SRGAP1, a crucial target of miR-340 and miR-124, functions as a potential oncogene in gastric tumorigenesis. Oncogene 37:1159–1174. https://doi.org/10.1038/s41388-017-0029-7 - PubMed
  36. Li Y, Qiao L, Bai Y et al (2021) Identification of SRGAP2 as a potential oncogene and a prognostic biomarker in hepatocellular carcinoma. Life Sci 277:119592. https://doi.org/10.1016/j.lfs.2021.119592 - PubMed
  37. Gao J, Ma Y, Fu H-L et al (2016) Non-catalytic roles for TET1 protein negatively regulating neuronal differentiation through srGAP3 in neuroblastoma cells. Protein Cell 7:351–361. https://doi.org/10.1007/s13238-016-0267-4 - PubMed
  38. Forshew T, Tatevossian RG, Lawson ARJ et al (2009) Activation of the ERK/MAPK pathway: a signature genetic defect in posterior fossa pilocytic astrocytomas. J Pathol 218:172–181. https://doi.org/10.1002/path.2558 - PubMed
  39. Nojiri K, Iwakawa M, Ichikawa Y et al (2009) The proangiogenic factor ephrin-A1 is up-regulated in radioresistant murine tumor by irradiation. Exp Biol Med 234:112–122. https://doi.org/10.3181/0806-RM-189 - PubMed
  40. Jain P, Fierst TM, Han HJ et al (2017) CRAF gene fusions in pediatric low-grade gliomas define a distinct drug response based on dimerization profiles. Oncogene 36:6348–6358. https://doi.org/10.1038/onc.2017.276 - PubMed
  41. Tsai C-H, Chiu J-H, Yang C-W et al (2015) Molecular characteristics of recurrent triple-negative breast cancer. Mol Med Rep 12:7326–7334. https://doi.org/10.3892/mmr.2015.4360 - PubMed
  42. Ho NTT, Rahane CS, Pramanik S et al (2021) FAM72, glioblastoma multiforme (GBM) and beyond. Cancers 13:1025. https://doi.org/10.3390/cancers13051025 - PubMed
  43. Jiang Y, Shen H, Liu X et al (2011) Genetic variants at 1p112 and breast cancer risk: a two-stage study in Chinese women. PLoS One 6:e21563. https://doi.org/10.1371/journal.pone.0021563 - PubMed
  44. Koo S, Martin G, Toussaint LG (2015) MicroRNA-145 promotes the phenotype of human glioblastoma cells selected for invasion. Anticancer Res 35:3209–3215 - PubMed
  45. Rani SB, Rathod SS, Karthik S et al (2013) MiR-145 functions as a tumor-suppressive RNA by targeting Sox9 and adducin 3 in human glioma cells. Neuro Oncol 15:1302–1316. https://doi.org/10.1093/neuonc/not090 - PubMed
  46. Qian C, Wang B, Zou Y et al (2019) MicroRNA 145 enhances chemosensitivity of glioblastoma stem cells to demethoxycurcumin. Cancer Manag Res 11:6829–6840. https://doi.org/10.2147/CMAR.S210076 - PubMed
  47. Yokoyama NN, Sakai T, Sun Z et al (2014) Abstract 3314: Co-regulation of srGAP1 by Wnt and androgen receptor signaling in castration resistant prostate cancer. Cancer Res 74:3314–3314. https://doi.org/10.1158/1538-7445.AM2014-3314 - PubMed
  48. Guo S, Bao S (2010) srGAP2 arginine methylation regulates cell migration and cell spreading through promoting dimerization. J Biol Chem 285:35133–35141. https://doi.org/10.1074/jbc.M110.153429 - PubMed

Publication Types