Display options
Share it on

Sci Rep. 2021 Dec 02;11(1):23290. doi: 10.1038/s41598-021-02783-1.

Bone density and genomic analysis unfold cold adaptation mechanisms of ancient inhabitants of Tierra del Fuego.

Scientific reports

Mikiko Watanabe, Renata Risi, Mary Anne Tafuri, Valentina Silvestri, Daniel D'Andrea, Domenico Raimondo, Sandra Rea, Fabio Di Vincenzo, Antonio Profico, Dario Tuccinardi, Rosa Sciuto, Sabrina Basciani, Stefania Mariani, Carla Lubrano, Saverio Cinti, Laura Ottini, Giorgio Manzi, Lucio Gnessi

Affiliations

  1. Section of Medical Pathophysiology, Food Science and Endocrinology, Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy. [email protected].
  2. Section of Medical Pathophysiology, Food Science and Endocrinology, Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy.
  3. Department of Environmental Biology, Sapienza University of Rome, Rome, Italy.
  4. Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy.
  5. MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, Wales, UK.
  6. Nuclear Medicine Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy.
  7. Natural History Museum-University of Florence, Florence, Italy.
  8. Italian Institute of Human Paleontology (IsIPU), Anagni-Rome, Italy.
  9. Unit of Endocrinology and Diabetes, Campus Bio-Medico University of Rome, 00128, Rome, Italy.
  10. Center of Obesity, Marche Polytechnic University, Ancona, Italy.
  11. Section of Medical Pathophysiology, Food Science and Endocrinology, Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy. [email protected].

PMID: 34857816 PMCID: PMC8639971 DOI: 10.1038/s41598-021-02783-1

Abstract

The Fuegians, ancient inhabitants of Tierra del Fuego, are an exemplary case of a cold-adapted population, since they were capable of living in extreme climatic conditions without any adequate clothing. However, the mechanisms of their extraordinary resistance to cold remain enigmatic. Brown adipose tissue (BAT) plays a crucial role in this kind of adaptation, besides having a protective role on the detrimental effect of low temperatures on bone structure. Skeletal remains of 12 adult Fuegians, collected in the second half of XIX century, were analyzed for bone mineral density and structure. We show that, despite the unfavorable climate, bone mineral density of Fuegians was close to that seen in modern humans living in temperate zones. Furthermore, we report significant differences between Fuegians and other cold-adapted populations in the frequency of the Homeobox protein Hox-C4 (HOXC4) rs190771160 variant, a gene involved in BAT differentiation, whose identified variant is predicted to upregulate HOXC4 expression. Greater BAT accumulation might therefore explain the Fuegians extreme cold-resistance and the protection against major cold-related damage. These results increase our understanding of how ecological challenges have been important drivers of human-environment interactions during Humankind history.

© 2021. The Author(s).

References

  1. Compr Physiol. 2018 Sep 14;8(4):1357-1431 - PubMed
  2. Am J Phys Anthropol. 2018 Nov;167(3):557-568 - PubMed
  3. Mol Cell. 2014 Jan 9;53(1):49-62 - PubMed
  4. Cell Metab. 2014 Feb 4;19(2):302-9 - PubMed
  5. PLoS One. 2017 Apr 13;12(4):e0175594 - PubMed
  6. Int J Obes (Lond). 2019 Aug;43(8):1516-1525 - PubMed
  7. Diabetes. 2009 Nov;58(11):2583-7 - PubMed
  8. Nature. 2017 Jan 18;541(7637):302-310 - PubMed
  9. J Exp Med. 2011 Apr 11;208(4):841-51 - PubMed
  10. Temperature (Austin). 2016 Feb 22;3(1):104-18 - PubMed
  11. PLoS One. 2013 May 08;8(5):e63391 - PubMed
  12. Nature. 2012 Jan 11;481(7382):463-8 - PubMed
  13. J Vis Exp. 2018 Jan 29;(131): - PubMed
  14. J Endocr Soc. 2018 Dec 18;3(2):372-386 - PubMed
  15. Am J Phys Anthropol. 2015 Dec;158(4):719-29 - PubMed
  16. Am J Phys Anthropol. 2017 Jun;163(2):295-316 - PubMed
  17. Trends Endocrinol Metab. 2016 Jan;27(1):11-23 - PubMed
  18. J Physiol Biochem. 2020 May;76(2):185-192 - PubMed
  19. Am J Clin Nutr. 1974 Sep;27(9):916-25 - PubMed
  20. Heredity (Edinb). 2014 Sep;113(3):259-67 - PubMed
  21. Trends Ecol Evol. 2018 Aug;33(8):582-594 - PubMed
  22. Bone. 2014 Jan;58:55-8 - PubMed
  23. Physiol Rev. 2004 Jan;84(1):277-359 - PubMed
  24. Nutrients. 2020 Jul 22;12(8): - PubMed
  25. Arch Osteoporos. 2014;9:202 - PubMed
  26. Comp Biochem Physiol A Physiol. 1995 Jun;111(2):209-14 - PubMed
  27. Osteoporos Int. 2013 Apr;24(4):1513-8 - PubMed
  28. Sci Transl Med. 2016 Jan 27;8(323):323ra13 - PubMed
  29. Trends Endocrinol Metab. 2014 Apr;25(4):168-77 - PubMed
  30. Bone. 2013 Apr;53(2):336-9 - PubMed
  31. Nat Methods. 2014 Apr;11(4):361-2 - PubMed
  32. Sci Rep. 2017 Jun 6;7(1):2811 - PubMed
  33. Bone. 2018 Jan;106:167-178 - PubMed
  34. Am J Hum Biol. 2007 Mar-Apr;19(2):218-27 - PubMed
  35. Endocrinology. 2015 Jul;156(7):2374-83 - PubMed
  36. J Clin Endocrinol Metab. 2011 Aug;96(8):2450-5 - PubMed
  37. Gene Expr Patterns. 2016 Mar;20(2):99-105 - PubMed
  38. Am J Phys Anthropol. 2000 Sep;113(1):19-29 - PubMed
  39. Science. 2015 Aug 21;349(6250):aab3884 - PubMed
  40. Nat Commun. 2020 Aug 3;11(1):3868 - PubMed
  41. J Clin Endocrinol Metab. 2012 Aug;97(8):2693-8 - PubMed
  42. Nature. 2021 Nov;599(7883):41-46 - PubMed
  43. Am J Hum Biol. 1997;9(3):329-341 - PubMed
  44. Nucleic Acids Res. 2019 Jul 2;47(W1):W106-W113 - PubMed
  45. Lancet Diabetes Endocrinol. 2014 Mar;2(3):210-7 - PubMed
  46. Cell. 2014 Jan 16;156(1-2):20-44 - PubMed

Publication Types