Display options
Share it on

Sci Signal. 2021 Aug 24;14(697). doi: 10.1126/scisignal.abe2606.

Comparative analysis of TCR and CAR signaling informs CAR designs with superior antigen sensitivity and in vivo function.

Science signaling

Alexander I Salter, Anusha Rajan, Jacob J Kennedy, Richard G Ivey, Sarah A Shelby, Isabel Leung, Megan L Templeton, Vishaka Muhunthan, Valentin Voillet, Daniel Sommermeyer, Jeffrey R Whiteaker, Raphael Gottardo, Sarah L Veatch, Amanda G Paulovich, Stanley R Riddell

Affiliations

  1. Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA. [email protected] [email protected].
  2. Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
  3. Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
  4. Department of Biophysics, University of Michigan, Ann Arbor, MI 48109, USA.
  5. Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
  6. Cape Town HVTN Immunology Laboratory, Hutchinson Centre Research Institute of South Africa, NPC (HCRISA), Cape Town 8001, South Africa.
  7. Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA.

PMID: 34429382 PMCID: PMC8613804 DOI: 10.1126/scisignal.abe2606

Abstract

Chimeric antigen receptor (CAR)-modified T cell therapy is effective in treating lymphomas, leukemias, and multiple myeloma in which the tumor cells express high amounts of target antigen. However, achieving durable remission for these hematological malignancies and extending CAR T cell therapy to patients with solid tumors will require receptors that can recognize and eliminate tumor cells with a low density of target antigen. Although CARs were designed to mimic T cell receptor (TCR) signaling, TCRs are at least 100-fold more sensitive to antigen. To design a CAR with improved antigen sensitivity, we directly compared TCR and CAR signaling in primary human T cells. Global phosphoproteomic analysis revealed that key T cell signaling proteins-such as CD3δ, CD3ε, and CD3γ, which comprise a portion of the T cell co-receptor, as well as the TCR adaptor protein LAT-were either not phosphorylated or were only weakly phosphorylated by CAR stimulation. Modifying a commonplace 4-1BB/CD3ζ CAR sequence to better engage CD3ε and LAT using embedded CD3ε or GRB2 domains resulted in enhanced T cell activation in vitro in settings of a low density of antigen, and improved efficacy in in vivo models of lymphoma, leukemia, and breast cancer. These CARs represent examples of alterations in receptor design that were guided by in-depth interrogation of T cell signaling.

Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

References

  1. Proc Natl Acad Sci U S A. 2010 Jun 15;107(24):10972-7 - PubMed
  2. J Immunol. 2002 Apr 1;168(7):3145-9 - PubMed
  3. Science. 2016 Apr 29;352(6285):595-9 - PubMed
  4. Nat Biomed Eng. 2019 Dec;3(12):974-984 - PubMed
  5. Mol Ther. 2017 Sep 6;25(9):2189-2201 - PubMed
  6. Nat Immunol. 2020 Aug;21(8):902-913 - PubMed
  7. J Clin Invest. 2019 Mar 21;129(6):2210-2221 - PubMed
  8. Nature. 2012 Jul 5;487(7405):64-9 - PubMed
  9. Nat Immunol. 2018 Jul;19(7):733-741 - PubMed
  10. N Engl J Med. 2018 Feb 1;378(5):439-448 - PubMed
  11. Immunity. 2013 Nov 14;39(5):846-57 - PubMed
  12. Nat Med. 2015 Jun;21(6):581-90 - PubMed
  13. Int Immunol. 1999 Jun;11(6):943-50 - PubMed
  14. Cancer Discov. 2018 Oct;8(10):1219-1226 - PubMed
  15. Nat Immunol. 2019 Nov;20(11):1530-1541 - PubMed
  16. Blood. 2017 Jun 22;129(25):3322-3331 - PubMed
  17. J Clin Invest. 2020 Jun 1;130(6):3087-3097 - PubMed
  18. Mol Ther Oncolytics. 2019 Aug 28;15:60-68 - PubMed
  19. Leukemia. 2016 Feb;30(2):492-500 - PubMed
  20. Nat Immunol. 2014 Sep;15(9):815-23 - PubMed
  21. Sci Signal. 2012 Sep 25;5(243):ra68 - PubMed
  22. Science. 1992 Jan 3;255(5040):79-82 - PubMed
  23. Nat Immunol. 2011 Apr;12(4):352-61 - PubMed
  24. Nature. 2017 Mar 2;543(7643):113-117 - PubMed
  25. Proc Natl Acad Sci U S A. 2018 Feb 27;115(9):E2068-E2076 - PubMed
  26. Nat Biotechnol. 2016 Apr;34(4):430-4 - PubMed
  27. J Immunol. 2018 Feb 1;200(3):1088-1100 - PubMed
  28. Mol Biol Cell. 2020 Mar 19;31(7):667-682 - PubMed
  29. Nat Biotechnol. 2008 Dec;26(12):1367-72 - PubMed
  30. Sci Signal. 2019 Feb 12;12(568): - PubMed
  31. Immunity. 2016 Feb 16;44(2):380-90 - PubMed
  32. J Clin Invest. 2016 Jun 1;126(6):2123-38 - PubMed
  33. Cell. 1998 Jan 9;92(1):83-92 - PubMed
  34. Nat Immunol. 2008 May;9(5):522-32 - PubMed
  35. Nat Med. 2019 Jun;25(6):947-953 - PubMed
  36. Immunity. 1996 Jun;4(6):565-71 - PubMed
  37. Nat Med. 2018 Jan;24(1):20-28 - PubMed
  38. Proc Natl Acad Sci U S A. 2017 Sep 26;114(39):E8204-E8213 - PubMed
  39. Sci Transl Med. 2016 Sep 7;8(355):355ra116 - PubMed
  40. Hum Gene Ther. 2018 May;29(5):585-601 - PubMed
  41. J Immunol. 2015 Feb 1;194(3):911-20 - PubMed
  42. Sci Signal. 2018 Aug 21;11(544): - PubMed
  43. Nat Med. 2018 Mar;24(3):352-359 - PubMed
  44. Cancer Cell. 2020 Feb 10;37(2):216-225.e6 - PubMed
  45. Immunity. 1998 Nov;9(5):617-26 - PubMed
  46. J Biol Chem. 2015 Oct 30;290(44):26422-9 - PubMed
  47. J Clin Invest. 2016 Aug 1;126(8):3130-44 - PubMed
  48. PLoS One. 2013 Oct 30;8(10):e77423 - PubMed
  49. Sci Signal. 2020 Mar 31;13(625): - PubMed
  50. Protein Eng. 1993 Nov;6(8):989-95 - PubMed
  51. Front Immunol. 2015 Mar 30;6:141 - PubMed
  52. J Clin Oncol. 2018 Aug 1;36(22):2267-2280 - PubMed
  53. Nat Med. 2010 May;16(5):565-70, 1p following 570 - PubMed
  54. Proc Natl Acad Sci U S A. 2010 Sep 28;107(39):16916-21 - PubMed
  55. Biophys J. 2018 Sep 18;115(6):1116-1129 - PubMed
  56. Nature. 2019 Dec;576(7786):293-300 - PubMed
  57. Nat Med. 2019 Jan;25(1):82-88 - PubMed
  58. J Immunol. 2008 Jul 1;181(1):243-55 - PubMed
  59. Sci Transl Med. 2017 Jul 19;9(399): - PubMed
  60. Nature. 2017 May 24;545(7655):423-431 - PubMed
  61. Nat Rev Clin Oncol. 2018 Jan;15(1):47-62 - PubMed
  62. Nat Commun. 2019 May 7;10(1):2087 - PubMed
  63. Nat Commun. 2018 Aug 3;9(1):3049 - PubMed
  64. Nat Immunol. 2014 Sep;15(9):798-807 - PubMed
  65. Immunity. 1998 Aug;9(2):239-46 - PubMed
  66. Proc Natl Acad Sci U S A. 2017 Jul 18;114(29):E5891-E5899 - PubMed
  67. Cancer Discov. 2020 May;10(5):702-723 - PubMed
  68. Nat Methods. 2016 Sep;13(9):731-40 - PubMed
  69. J Clin Oncol. 2017 Jun 1;35(16):1803-1813 - PubMed
  70. N Engl J Med. 2018 Feb 1;378(5):449-459 - PubMed
  71. N Engl J Med. 2017 Dec 28;377(26):2531-2544 - PubMed
  72. Nature. 1995 May 11;375(6527):148-51 - PubMed
  73. Nat Immunol. 2020 Aug;21(8):848-856 - PubMed
  74. Nature. 2019 Apr;568(7750):112-116 - PubMed
  75. Clin Cancer Res. 2013 Jun 15;19(12):3153-64 - PubMed
  76. Nat Rev Immunol. 2013 Apr;13(4):257-69 - PubMed

Publication Types

Grant support