Display options
Share it on

Int J Cancer. 2021 Dec 18; doi: 10.1002/ijc.33912. Epub 2021 Dec 18.

Complexity against current cancer research: Are we on the wrong track?.

International journal of cancer

Yasenya Kasikci, Hinrich Gronemeyer

Affiliations

  1. Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.
  2. Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.
  3. Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France.
  4. Université de Strasbourg, Illkirch, France.

PMID: 34921726 DOI: 10.1002/ijc.33912

Abstract

Cancer genetics has led to major discoveries, including protooncogene and tumor-suppressor concepts, and cancer genomics generated concepts like driver and passenger genes, revealed tumor heterogeneity and clonal evolution. Reconstructing trajectories of tumorigenesis using spatial and single-cell genomics is possible. Patient stratification and prognostic parameters have been improved. Yet, despite these advances, successful translation into targeted therapies has been scarce and mostly limited to kinase inhibitors. Here, we argue that current cancer research may be on the wrong track, by considering cancer more as a "monogenic" disease, trying to extract common information from thousands of patients, while not properly considering complexity and individual diversity. We suggest to empower a systems cancer approach which reconstructs the information network that has been altered by the tumorigenic events, to analyze hierarchies and predict (druggable) key nodes that could interfere with/block the aberrant information transfer. We also argue that the interindividual variability between patients of similar cohorts is too high to extract common polygenic network information from large numbers of patients and argue in favor of an individualized approach. The analysis we propose would require a structured multinational and multidisciplinary effort, in which clinicians, and cancer, developmental, cell and computational biologists together with mathematicians and informaticians develop dynamic regulatory networks which integrate the entire information transfer in and between cells and organs in (patho)physiological conditions, revealing hierarchies and available drugs to interfere with key regulators. Based on this blueprint, the altered information transfer in individual cancers could be modeled and possible targeted (combo)therapies proposed.

© 2021 UICC.

Keywords: complexity challenge; conceptual problems in cancer genomics; information transfer; integrated network analysis

References

  1. Bianconi E, Piovesan A, Facchin F, et al. An estimation of the number of cells in the human body. Ann Hum Biol. 2013;40:463-471. - PubMed
  2. Borgatti SP, Mehra A, Brass DJ, Labianca G. Network analysis in the social sciences. Science. 2009;323:892-895. - PubMed
  3. Kadushin C. Understanding Social Networks: Theories, Concepts and Findings. New York: Oxford University Press; 2012:251. - PubMed
  4. Bullmore E, Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci. 2009;10:186-198. doi:10.1093/oso/9780198805090.001.0001 - PubMed
  5. Newman M. Networks. Second Ed., Oxford: Oxford University Press; 2018. doi:10.1093/oso/9780198805090.001.0001 - PubMed
  6. Bondy JA, Murty USR. Graph Theory with Applications. London: Macmillan; 1976. - PubMed
  7. Zhang W, Chien J, Yong J, Kuang R. Network-based machine learning and graph theory algorithms for precision oncology. npj Precis Oncol. 2017;1:25. - PubMed
  8. Kumar A, Kasikci Y, Badredine A, et al. Patient-matched analysis identifies deregulated networks in prostate cancer to guide personalized therapeutic intervention. Am J Cancer Res. 2021;11:5299-5318. - PubMed
  9. Logan CY, Nusse R. The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol. 2004;20:781-810. - PubMed
  10. La GM. Connaissance est un réseau. Cah Numér. 2014;10:37-54. - PubMed
  11. Nebbioso A, Tambaro FP, Dell'Aversana C, Altucci L. Cancer epigenetics: moving forward. PLoS Genet. 2018;14:e1007362. - PubMed
  12. Dawson MA, Kouzarides T. Cancer epigenetics: from mechanism to therapy. Cell. 2012;150:12-27. - PubMed
  13. Cholley PE, Moehlin J, Rohmer A, et al. Modeling gene-regulatory networks to describe cell fate transitions and predict master regulators. npj Syst Biol Appl. 2018;4:29. - PubMed
  14. Guerra C, Mijimolle N, Dhawahir A, et al. Tumor induction by an endogenous K-ras oncogene is highly dependent on cellular context. Cancer Cell. 2003;4:111-120. - PubMed
  15. Mainardi S, Mijimolle N, Francoz S, Vicente-Duenas C, Sanchez-Garcia I, Barbacid M. Identification of cancer initiating cells in K-Ras driven lung adenocarcinoma. Proc Natl Acad Sci U S A. 2014;111:255-260. - PubMed
  16. Kandoth C, McLellan MD, Vandin F, et al. Mutational landscape and significance across 12 major cancer types. Nature. 2013;502:333-339. - PubMed
  17. Bailey MH, Tokheim C, Porta-Pardo E, et al. Comprehensive characterization of cancer driver genes and mutations. Cell. 2018;173:371-85.e18. - PubMed
  18. Armenia J, Wankowicz SAM, Liu D, et al. The long tail of oncogenic drivers in prostate cancer. Nat Genet. 2018;50:645-651. - PubMed
  19. Greaves M, Maley CC. Clonal evolution in cancer. Nature. 2012;481:306-313. - PubMed
  20. Grunwald BT, Devisme A, Andrieux G, et al. Spatially confined sub-tumor microenvironments in pancreatic cancer. Cell. 2021;184:5577-5592. - PubMed
  21. Greaves M. Evolutionary determinants of cancer. Cancer Discov. 2015;5:806-820. - PubMed
  22. McGranahan N, Swanton C. Clonal heterogeneity and tumor evolution: past, present, and the future. Cell. 2017;168:613-628. - PubMed
  23. Birkbak NJ, McGranahan N. Cancer genome evolutionary trajectories in metastasis. Cancer Cell. 2020;37:8-19. - PubMed
  24. Pavlova NN, Thompson CB. The emerging hallmarks of cancer metabolism. Cell Metab. 2016;23:27-47. - PubMed
  25. Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153:1194-1217. - PubMed
  26. Lopez-Otin C, Kroemer G. Hallmarks of health. Cell. 2021;184:1929-1939. - PubMed
  27. Mittelbrunn M, Kroemer G. Hallmarks of T cell aging. Nat Immunol. 2021;22:687-698. - PubMed
  28. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646-674. - PubMed
  29. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100:57-70. - PubMed
  30. Kuperstein I, Bonnet E, Nguyen HA, et al. Atlas of cancer signalling network: a systems biology resource for integrative analysis of cancer data with Google maps. Oncogenesis. 2015;4:e160. - PubMed
  31. Regev A, Teichmann SA, Lander ES, et al. The human cell atlas. Elife. 2017;6:e67886. doi:10.7554/eLife.67886. PMID: 34612202 - PubMed
  32. Snyder MP, Lin S, Posgai A, et al. The human body at cellular resolution: the NIH human biomolecular atlas program. Nature. 2019;574:187-192. - PubMed
  33. Rajewsky N, Almouzni G, Gorski SA, et al. LifeTime and improving European healthcare through cell-based interceptive medicine. Nature. 2020;587:377-386. - PubMed
  34. de Thé H, Pandolfi PP, Chen Z. Acute promyelocytic leukemia: a paradigm for oncoprotein-targeted cure. Cancer Cell. 2017;32:552-560. doi:10.1016/j.ccell.2017.10.002 - PubMed
  35. Apperley JF. Chronic myeloid leukaemia. Lancet. 2015;385:1447-1459. - PubMed
  36. Deininger MW, Goldman JM, Melo JV. The molecular biology of chronic myeloid leukemia. Blood. 2000;96:3343-3356. - PubMed
  37. Greaves M. A causal mechanism for childhood acute lymphoblastic leukaemia. Nat Rev Cancer. 2018;18:471-484. - PubMed
  38. Curtis C, Shah SP, Chin SF, et al. The genomic and transcriptomic architecture of 2000 breast tumours reveals novel subgroups. Nature. 2012;486:346-352. doi:10.1038/nature10983 - PubMed
  39. Robinson D, van Allen EM, Wu YM, et al. Integrative clinical genomics of advanced prostate cancer. Cell. 2015;161:1215-1228. doi:10.1016/j.cell.2015.06.053 - PubMed
  40. Mendiratta G, Ke E, Aziz M, Liarakos D, Tong M, Stites EC. Cancer gene mutation frequencies for the US population. Nat Commun. 2021;12:5961. - PubMed
  41. Farashi S, Kryza T, Clements J, Batra J. Post-GWAS in prostate cancer: from genetic association to biological contribution. Nat Rev Cancer. 2019;19:46-59. - PubMed
  42. Baca SC, Prandi D, Lawrence MS, et al. Punctuated evolution of prostate cancer genomes. Cell. 2013;153:666-677. - PubMed
  43. Barbieri CE, Baca SC, Lawrence MS, et al. Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer. Nat Genet. 2012;44:685-689. - PubMed
  44. Grasso CS, Wu YM, Robinson DR, et al. The mutational landscape of lethal castration-resistant prostate cancer. Nature. 2012;487:239-243. doi:10.1038/nature11125 - PubMed
  45. Haffner MC, Mosbruger T, Esopi DM, et al. Tracking the clonal origin of lethal prostate cancer. J Clin Invest. 2013;123:4918-4922. - PubMed
  46. Mancuso N, Gayther S, Gusev A, et al. Large-scale transcriptome-wide association study identifies new prostate cancer risk regions. Nat Commun. 2018;9:4079. - PubMed
  47. Abida W, Cyrta J, Heller G, et al. Genomic correlates of clinical outcome in advanced prostate cancer. Proc Natl Acad Sci U S A. 2019;116:11428-11436. - PubMed
  48. You S, Knudsen BS, Erho N, et al. Integrated classification of prostate cancer reveals a novel luminal subtype with poor outcome. Cancer Res. 2016;76:4948-4958. - PubMed
  49. Drake JM, Paull EO, Graham NA, et al. Phosphoproteome integration reveals patient-specific networks in prostate cancer. Cell. 2016;166:1041-1054. - PubMed
  50. Boyle EA, Li YI, Pritchard JK. An expanded view of complex traits: from polygenic to omnigenic. Cell. 2017;169:1177-1186. - PubMed
  51. Malysheva V, Mendoza-Parra MA, Blum M, Spivakov M, Gronemeyer H. Gene regulatory network reconstruction incorporating 3D chromosomal architecture reveals key transcription factors and DNA elements driving neural lineage commitment. bioRxiv. 2019;303842. doi:10.1101/303842 - PubMed
  52. Eraslan G, Avsec Z, Gagneur J, Theis FJ. Deep learning: new computational modelling techniques for genomics. Nat Rev Genet. 2019;20:389-403. - PubMed

Publication Types

Grant support