Display options
Share it on

Histochem Cell Biol. 2022 Jan;157(1):107-118. doi: 10.1007/s00418-021-02046-0. Epub 2021 Nov 05.

Ultrastructure of spherites in the midgut diverticula and Malpighian tubules of the harvestman Amilenus aurantiacus during the winter diapause.

Histochemistry and cell biology

Saška Lipovšek, Tone Novak, Barbara Dariš, Ferdinand Hofer, Gerd Leitinger, Ilse Letofsky-Papst

Affiliations

  1. Faculty of Medicine, University of Maribor, Taborska ulica 8, SI-2000, Maribor, Slovenia. [email protected].
  2. Department of Biology, Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, SI-2000, Maribor, Slovenia. [email protected].
  3. Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000, Maribor, Slovenia. [email protected].
  4. Gottfried Schatz Research Center, Division of Cell Biology, Histology and Embryology, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010, Graz, Austria. [email protected].
  5. Department of Biology, Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, SI-2000, Maribor, Slovenia.
  6. Faculty of Medicine, University of Maribor, Taborska ulica 8, SI-2000, Maribor, Slovenia.
  7. Institute of Electron Microscopy and Nanoanalysis and Center for Electron Microscopy, Graz University of Technology, NAWI Graz, Steyrergasse 17, 8010, Graz, Austria.
  8. Gottfried Schatz Research Center, Division of Cell Biology, Histology and Embryology, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010, Graz, Austria.

PMID: 34738145 DOI: 10.1007/s00418-021-02046-0

Abstract

Amilenus aurantiacus overwinter in diapause, a natural starvation period, in hypogean habitats. The structure of spherites in the midgut diverticula (MD) and Malpighian tubules (MT) has been studied comparatively by light microscopy and TEM to detect eventual differences in mineral consumption in the beginning and at the end of the starvation period in these organs (MD and MT) associated with digestive processes. The chemical composition of spherites was examined by combining energy-dispersive X-ray spectroscopy (EDXS), electron energy-loss spectroscopy (EELS) and energy-filtered TEM (EFTEM). The structure of the spherites changed during overwintering in both organs. At the beginning of overwintering, the spherites were composed of densely packed concentric layers of electron-dense and electron-lucent material. In the middle and at the end of overwintering, the electron-lucent layers between the layers of material indicated the loss of some material. The chemical composition of the spherites changed only in the MD; at the beginning of overwintering, these contained Si, O, C and Fe, while later there was no more Fe. In contrast, spherites in the MT were composed of Si, O, C and Ca throughout overwintering. A less intensive exploitation of the MD spherites was probably due to complete cessation of digestive and other cell activity in this organ during the winter diapause; activity of the MT slowed, but continued removing the cell metabolites.

© 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Keywords: Analytical electron microscopy; Arachnids; Malpighian tubules; Midgut diverticula; Opiliones; Spherite structure

References

  1. Al-Mohanna SY, Nott JA (1989) Functional cytology of the hepatopancreas of Penaeus semisulcatus (Crustacea: Decapoda) during the moult cycle. Mar Biol 101:535–544 - PubMed
  2. Amutkan Mutlu D, Polat I, Suludere Z (2021) Histomorphology of the Malpighian tubules and the chemical composition of the spherocrystals in the tubule epithelial cells of adult Leptophyes albovittata (Kollar, 1833) (Orthoptera, Tettigoniidae). Microsc Microanal. https://doi.org/10.1017/S143192762101223X - PubMed
  3. Azevedo C, Corral L (1987) Ultrastructural and cytochemical observations of the spherites in a parasite trematode larva. J Submicrosc Cytol 19:455–464 - PubMed
  4. Ballan-Dufrancais C (2002) Localization of metals in cells of pterygote insects. Microsc Res Tech 56:403–420 - PubMed
  5. Becker A, Peters W (1985) Fine structure of the midgut gland of Phalangium opilio (Chelicerata, Phalangida). Zoomorphology 105:317–325 - PubMed
  6. Bellanca A, Hauser S, Neri R et al (1996) Mineralogy and geochemistry of Terra Rossa soils, western Sicily: insights into heavy metal fractionation and mobility. Sci Total Environ 193:57–67. https://doi.org/10.1016/S0048-9697(96)05336-3 - PubMed
  7. Beyenbach KW, Skaer H, Dow JAT (2010) The development, molecular, and transport biology of Malpighian tubules. Annu Rev Entomol 55:351–374. https://doi.org/10.1146/annurev-ento-112408-085512 - PubMed
  8. Bourne JD (1978a) Données préliminaires sur l’écologie et la biologie de l’opilion trogloxène Amilenus aurantiacus (Simon). Actes 6e Congrès Suisse de Spéléologie, Porrentruy, pp 17–24 - PubMed
  9. Bourne JD (1978b) Observations préliminaires sur l’intestin de l’opilion trogloxène Amilenus aurantiacus (Simon) pendant son sejour souterrain. Mém Biospéol 8:39–42 - PubMed
  10. Bradley TJ (2008) Active transport in insect recta. J Exp Biol 211:835–836. https://doi.org/10.1242/jeb.009589 - PubMed
  11. Cohen E, Sawyer JK, Peterson NG et al (2020) Physiology, development, and disease modeling in the Drosophila excretory system. Genetics 214:235–264. https://doi.org/10.1534/genetics.119.302289 - PubMed
  12. Colville AE, Lim RP (2003) Microscopic structure of the mantle and palps in the freshwater mussels Velesunio ambiguous and Hyridella depressa (Bivalvia: Hyriidae). Molluscan Res 23:1–20. https://doi.org/10.1071/MR02014 - PubMed
  13. Da Cruz-Landim C, Serräo JE (1997) Ultrastructure and histochemistry of the mineral concretions in the midgut of bees (Hymenoptera: Apidae). Nether J Zool 47:21–29 http://hdl.handle.net/11449/39081 - PubMed
  14. Da Cruz-Landim C (2000) Localization of calcium and acid phosphatase in the Malpighian tubules of nurse workers of Melipona quadrifasciata anthidioides Lep. (Hymenoptera, Apidae, Meliponini). Biosci J 16(1):87–99 - PubMed
  15. Dow JAT (2017) The essential roles of metal ions in insect homeostasis and physiology. Curr Opin Insect Sci 23:43–50. https://doi.org/10.1016/j.cois.2017.07.001 - PubMed
  16. Goyffon M, Martoja R (1983) Cytophysiological aspects of digestion and storage in the liver of a scorpion Androctonus australis (Arachnida). Cell Tissue Res 228:661–675 - PubMed
  17. Guyton AC, Hall JE (2006) Metabolism and temperature regulation. In: Guyton AC, Hall JE (eds) Textbook of medical physiology. Elsevier Inc., Philadelphia, pp 878–879 - PubMed
  18. Hazelton SR, Felgenhauer BE, Spring JH (2001) Ultrastructural changes in the Malpighian tubules of the house cricket, Acheta domesticus, at the onset of diuresis: a time study. J Morphol 247:80–92. https://doi.org/10.1002/1097-4687(200101)247:1%3c80::AID-JMOR1004%3e3.0.CO;2-X| - PubMed
  19. Humbert W (1978) Cytochemistry and x-ray microprobe analysis of the midgut of Tomocerus minor Lubbock (Insecta, Collembola) with special reference to the physiological significance of the mineral concretions. Cell Tissue Res 187:397–416 - PubMed
  20. Jequier J-P (1964) Étude écologique et statistique de la faune terrestre d’une caverne du Jura Suisse au cours d’une année d’observations. Rev Suisse Zool 71:13–370 - PubMed
  21. Kalender Y, Kalender S (1996) Fine structure of Malpighian tubules in the moth Agrotis segetum (Lepidoptera: Noctuidea). J Inst Sci Technol Gazi Univ 9:669–680 - PubMed
  22. Kalender Y, Kalender S, Candan S (2002) Fine structure of Malpighian tubules in the Agrotis segetum (Lepidoptera: Noctuidae) pupae. Acta Zool Bulg 54:87–96 - PubMed
  23. Lipovšek S, Letofsky-Papst I, Hofer F et al (2002) Seasonal- and age dependent changes of the structure and chemical composition of the spherites in the midgut gland of the harvestmen Gyas annulatus (Opiliones). Micron 33:647–654. https://doi.org/10.1016/S0968-4328(02)00024-0 - PubMed
  24. Lipovšek S, Novak T, Janžekovič F (2004) A contribution to the functional morphology of the midgut gland in phalangiid harvestmen Gyas annulatus and Gyas titanus during their life cycle. Tissue Cell 36:275–282. https://doi.org/10.1016/j.tice.2004.04.003 - PubMed
  25. Lipovšek S, Letofsky-Pabst I, Novak T et al (2009) Structure of the Malpighian tubule cells and annual changes in the structure and chemical composition of their spherites in the cave cricket Troglophilus neglectus Krauss, 1878 (Rhaphidophoridae, Saltatoria). Arthr Struct Dev 38:315–327. https://doi.org/10.1016/j.asd.2009.02.001 - PubMed
  26. Lipovšek S, Letofsky-Papst I, Hofer F et al (2012) Application of analytical electron microscopic methods to investigate the function of spherites in the midgut of the larval antlion Euroleon nostras (Neuroptera: Myrmeleontidae). Microsc Res Tech 75(4):397–407. https://doi.org/10.1002/jemt.21069| - PubMed
  27. Lipovšek S, Novak T, Janžekovič F et al (2015) Changes in the midgut diverticula in the harvestmen Amilenus aurantiacus (Phalangiidae, Opiliones) during winter diapause. Arthr Struct 44(2):131–141. https://doi.org/10.1016/j.asd.2014.12.002 - PubMed
  28. Lipovšek S, Janžekovič F, Novak T (2017) Ultrastructure of fat body cells and Malpighian tubule cells in overwintering Scolyopterix libatrix (Noctuoidea). Protoplasma 254(6):2189–2199. https://doi.org/10.1007/s00709-017-1110-3 - PubMed
  29. Lipovšek S, Leitinger G, Janžekovič F et al (2019) Towards understanding partial adaptation to the subterranean habitat in the European cave spider, Meta menardi: Ecocytological approach. Sci Rep 9:9121. https://doi.org/10.1038/s41598-019-45291-z - PubMed
  30. Lipovšek S, Kozel P, Leitinger G et al (2021) Malpighian tubules in harvestmen. Protoplasma. https://doi.org/10.1007/s00709-021-01634-0 - PubMed
  31. Luchtel LL, Martin AW, Deyrup-Olsen I et al (1997) Gastropoda: Pulmonata. In: Harrison FW, Kohn AJ (eds) Microscopic anatomy of invertebrates mollusca II. Willey-Liss Inc., New York, pp 459–718 - PubMed
  32. Ludwig M, Alberti G (1988) Mineral congregations, “spherites” in the midgut gland of Coelotes terrestris (Araneae): structure, composition and function. Protoplasma 143:43–50 - PubMed
  33. Martens J (1969) Systematische Stellung von Amilenus aurantiacus (Simon) (Opiliones, Phalangiidae). Senckenb Biol 50(3/4):219–224 - PubMed
  34. Martens J (1978) Weberknechte, opiliones. Die tierwelt deutschlands 64. Fischer Verlag, Berlin - PubMed
  35. Mason AZ, Simkiss K (1982) Sites of mineral deposition in metal-accumulating cells. Exp Cell Res 139:383–391. https://doi.org/10.1016/0014-4827(82)90263-4 - PubMed
  36. Nocelli RCF, Cintra-Socolowski P, Roat TC et al (2016) Comparative physiology of Malpighian tubules: form and function. Open Access Insect Physiol 6:13–23. https://doi.org/10.2147/OAIP.S72060 - PubMed
  37. Novak T, Gruber J, Slana L (1984) Remarks on Opiliones from cavities in Slovenia (Yugoslavia). Mém Biospeol 11:185–197 - PubMed
  38. Novak T, Perc M, Lipovšek S et al (2012) Duality of terrestrial subterranean fauna. Int J Speleol 41(2):181–188. https://doi.org/10.5038/1827-806X.41.2.5 - PubMed
  39. Novak T, Janžekovič F, Lipovšek S (2013) Contribution of non-troglobiotic terrestrial invertebrates to carbon input in hypogean habitats. Acta Carsologica 42(2–3):301–309. https://doi.org/10.3986/ac.v42i2-3.669 - PubMed
  40. Pal R, Kumar K (2013) Malpighian tubules of adult flesh fly, Sarcophaga ruficornis Fab. (Diptera: Sarcophagidae): an ultrastructural study. Tissue Cell 45(5):312–317. https://doi.org/10.1016/j.tice.2013.04.002 - PubMed
  41. Pannabecker T (1995) Physiology of the malpighian tubule. Annu Rev Entomol 40:493–510. https://doi.org/10.1146/annurev.en.40.010195.002425 - PubMed
  42. Pigino G, Migliorini M, Paccagnini E et al (2005) Fine structure of the midgut and Malpighian papillae in Campodea (Monocampa) quilisi Silvestri, 1932 (Hexapoda, Diplura) with special reference to the metal composition and physiological significance of midgut intracellular electron-dense granules. Tissue Cell 37:223–232. https://doi.org/10.1016/j.tice.2005.02.001 - PubMed
  43. Pigino G, Migliorini M, Paccagnini E et al (2006) Localisation of heavy metals in the midgut epithelial cells of Xenillus tegeocranus (Hermann, 1804) (Acari: Oribatida). Ecotoxicol Environ Saf 64(3):257–263. https://doi.org/10.1016/j.ecoenv.2005.12.012 - PubMed
  44. Ponka P (1999) Cellular iron metabolism. Kidney Int 55(Suppl. 69):2–11. https://doi.org/10.1046/j.1523-1755.1999.055Suppl.69002.x - PubMed
  45. Rost-Roszkowska M, Poprawa I, Chajec Ł et al (2020) Influence of soil contaminated with cadmium on cell death in the digestive epithelium of soil centipede Lithobius forficatus (Myriapoda, Chilopoda). Eur Zool J 87:242–262. https://doi.org/10.1080/24750263.2020.1757168 - PubMed
  46. Shultz JW, Pinto-da-Rocha R (2007) Morphology and functional anatomy. In: Pinto-da-Rocha R, Machado G, Giribet G (eds.) Harvestmen. The Biology of Opiliones, Harvard University Press, Cambridge, pp 14–61 - PubMed
  47. Šobotník J, Alberti G, Wejda F et al (2008) Ultrastructure of the digestive tract in Acarus siro (Acari: Acaridida). J Morphol 269:54–71. https://doi.org/10.1002/jmor.10573| - PubMed
  48. Waku Y, Sumimoto KI (1974) Metamorphosis of the midgut epithelial cells in the silkworm (Bombyx mori L.) with special regard to the calcium salt deposits in the cytoplasm. II. Electron microscopy. Tissue Cell 6(1):127–136. https://doi.org/10.1016/S0040-8166(71)80035-6 - PubMed

Publication Types