Display options
Share it on

Nat Plants. 2021 Nov;7(11):1475-1484. doi: 10.1038/s41477-021-01014-9. Epub 2021 Nov 15.

The root meristem is shaped by brassinosteroid control of cell geometry.

Nature plants

Y Fridman, S Strauss, G Horev, M Ackerman-Lavert, A Reiner-Benaim, B Lane, R S Smith, S Savaldi-Goldstein

Affiliations

  1. Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel.
  2. Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany.
  3. Lorey I. Lokey Interdisciplinary Center for Life Sciences and Engineering, Technion - Israel Institute of Technology, Haifa, Israel.
  4. Clinical Epidemiology Unit, Rambam Health Care Campus, Haifa, Israel.
  5. Department of Computational and Systems Biology, John Innes Centre, Norwich, UK.
  6. Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany. [email protected].
  7. Department of Computational and Systems Biology, John Innes Centre, Norwich, UK. [email protected].
  8. Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel. [email protected].

PMID: 34782771 PMCID: PMC8592843 DOI: 10.1038/s41477-021-01014-9

Abstract

Growth extent and direction determine cell and whole-organ architecture. How they are spatio-temporally modulated to control size and shape is not well known. Here we tackled this question by studying the effect of brassinosteroid (BR) signalling on the structure of the root meristem. Quantification of the three-dimensional geometry of thousands of individual meristematic cells across different tissue types showed that the modulation of BR signalling yields distinct changes in growth rate and anisotropy, which affects the time that cells spend in the meristem and has a strong impact on the final root form. By contrast, the hormone effect on cell volume was minor, establishing cell volume as invariant to the effect of BR. Thus, BR has the highest effect on cell shape and growth anisotropy, regulating the overall longitudinal and radial growth of the meristem, while maintaining a coherent distribution of cell sizes. Moving from single-cell quantification to the whole organ, we developed a computational model of radial growth. The simulation demonstrates how differential BR-regulated growth between the inner and outer tissues shapes the meristem and thus explains the non-intuitive outcomes of tissue-specific perturbation of BR signalling. The combined experimental data and simulation suggest that the inner and outer tissues have distinct but coordinated roles in growth regulation.

© 2021. The Author(s).

References

  1. Curr Opin Genet Dev. 2020 Aug;63:16-23 - PubMed
  2. Plant Cell. 2008 Jun;20(6):1494-503 - PubMed
  3. Proc Natl Acad Sci U S A. 2014 Jun 10;111(23):8685-90 - PubMed
  4. Annu Rev Genet. 2019 Dec 3;53:45-65 - PubMed
  5. J Exp Bot. 2018 Feb 23;69(5):1037-1049 - PubMed
  6. Nat Methods. 2010 Jul;7(7):547-53 - PubMed
  7. Proc Natl Acad Sci U S A. 2000 Mar 28;97(7):3718-23 - PubMed
  8. Curr Biol. 2015 Jun 29;25(13):1746-52 - PubMed
  9. Planta. 2001 Apr;212(5-6):673-83 - PubMed
  10. Curr Biol. 2015 Apr 20;25(8):1031-42 - PubMed
  11. Mol Syst Biol. 2018 Jan 10;14(1):e7687 - PubMed
  12. Plant Cell Environ. 2017 Feb;40(2):264-276 - PubMed
  13. Curr Opin Plant Biol. 2020 Feb;53:90-97 - PubMed
  14. Plant Cell. 2015 Apr;27(4):1018-33 - PubMed
  15. Elife. 2018 Feb 27;7: - PubMed
  16. Plant J. 2014 Mar;77(5):806-14 - PubMed
  17. Plant Cell. 2020 Feb;32(2):295-318 - PubMed
  18. Plant Cell. 2012 Oct;24(10):4012-25 - PubMed
  19. Front Plant Sci. 2015 Nov 26;6:1038 - PubMed
  20. Nat Plants. 2021 May;7(5):619-632 - PubMed
  21. Nat Commun. 2021 Mar 12;12(1):1657 - PubMed
  22. Nat Methods. 2012 Jun 28;9(7):676-82 - PubMed
  23. Development. 1993 Sep;119(1):71-84 - PubMed
  24. Plant J. 2017 Dec;92(5):834-845 - PubMed
  25. Plant Physiol. 1994 Feb;104(2):505-513 - PubMed
  26. Science. 2008 Dec 12;322(5908):1650-5 - PubMed
  27. Plant Cell Physiol. 2021 Sep 24;62(4):678-692 - PubMed
  28. Genes Dev. 2014 Apr 15;28(8):912-20 - PubMed
  29. Proc Natl Acad Sci U S A. 2018 Nov 13;115(46):11838-11843 - PubMed
  30. Dev Cell. 2017 Nov 6;43(3):290-304.e4 - PubMed
  31. Science. 2012 Mar 2;335(6072):1096-9 - PubMed
  32. PLoS One. 2013 Dec 04;8(12):e82442 - PubMed
  33. Curr Opin Plant Biol. 2019 Feb;47:56-63 - PubMed
  34. Nature. 2019 Jan;565(7740):490-494 - PubMed
  35. Plant Mol Biol. 2006 Apr;60(6):963-79 - PubMed
  36. Development. 2011 Mar;138(5):849-59 - PubMed
  37. Plant Physiol. 1993 Mar;101(3):965-968 - PubMed
  38. J Plant Physiol. 2007 Nov;164(11):1395-409 - PubMed
  39. PLoS Comput Biol. 2014 Oct 30;10(10):e1003910 - PubMed
  40. Annu Rev Plant Biol. 2018 Apr 29;69:469-495 - PubMed
  41. Elife. 2015 May 06;4:05864 - PubMed
  42. Annu Rev Plant Physiol Plant Mol Biol. 1998 Jun;49:427-451 - PubMed
  43. Curr Opin Plant Biol. 2019 Feb;47:1-8 - PubMed
  44. Development. 2017 Jan 15;144(2):272-280 - PubMed
  45. Curr Biol. 2018 Sep 10;28(17):2718-2729.e5 - PubMed
  46. Plant Physiol. 2012 Aug;159(4):1463-76 - PubMed
  47. Proc Natl Acad Sci U S A. 2004 Apr 6;101(14):4728-35 - PubMed
  48. Development. 2011 Mar;138(5):839-48 - PubMed
  49. Proc Natl Acad Sci U S A. 2015 Jan 20;112(3):923-8 - PubMed

Publication Types