Display options
Share it on

Front Plant Sci. 2021 Dec 24;12:686586. doi: 10.3389/fpls.2021.686586. eCollection 2021.

Integrating Wheat Nucleolus Structure and Function: Variation in the Wheat Ribosomal RNA and Protein Genes.

Frontiers in plant science

Rudi Appels, Penghao Wang, Shahidul Islam

Affiliations

  1. AgriBio, Centre for AgriBioscience, La Trobe University, Bundoora, VIC, Australia.
  2. Faculty of Veterinary and Agricultural Science, Melbourne, VIC, Australia.
  3. School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, Australia.
  4. Centre for Crop Innovation, Food Futures Institute, Murdoch University, Murdoch, WA, Australia.

PMID: 35003148 PMCID: PMC8739226 DOI: 10.3389/fpls.2021.686586

Abstract

We review the coordinated production and integration of the RNA (ribosomal RNA, rRNA) and protein (ribosomal protein, RP) components of wheat cytoplasmic ribosomes in response to changes in genetic constitution, biotic and abiotic stresses. The components examined are highly conserved and identified with reference to model systems such as human, Arabidopsis, and rice, but have sufficient levels of differences in their DNA and amino acid sequences to form fingerprints or gene haplotypes that provide new markers to associate with phenotype variation. Specifically, it is argued that populations of ribosomes within a cell can comprise distinct complements of rRNA and RPs to form units with unique functionalities. The unique functionalities of ribosome populations within a cell can become central in situations of stress where they may preferentially translate mRNAs coding for proteins better suited to contributing to survival of the cell. In model systems where this concept has been developed, the engagement of initiation factors and elongation factors to account for variation in the translation machinery of the cell in response to stresses provided the precedents. The polyploid nature of wheat adds extra variation at each step of the synthesis and assembly of the rRNAs and RPs which can, as a result, potentially enhance its response to changing environments and disease threats.

Copyright © 2021 Appels, Wang and Islam.

Keywords: associated phenotypes; nucleolar dominance; rRNA structure; ribosomal protein (RP); sequence variation

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

References

  1. Mol Biol Cell. 2007 Feb;18(2):369-79 - PubMed
  2. Mol Psychiatry. 2006 Dec;11(12):1073-84 - PubMed
  3. Front Plant Sci. 2020 Jun 25;11:948 - PubMed
  4. J Biol Chem. 2019 Feb 22;294(8):2827-2838 - PubMed
  5. J Cell Sci. 2002 Jul 15;115(Pt 14):2839-46 - PubMed
  6. Front Mol Neurosci. 2015 Dec 16;8:75 - PubMed
  7. Eukaryot Cell. 2004 Dec;3(6):1619-26 - PubMed
  8. Genome. 1989 Jun;32(3):457-67 - PubMed
  9. Nucleic Acids Res. 1979 Dec 11;7(7):1869-85 - PubMed
  10. Nat Protoc. 2015 Jun;10(6):845-58 - PubMed
  11. J Mol Biol. 1988 Dec 5;204(3):523-34 - PubMed
  12. Nat Commun. 2021 Jan 15;12(1):387 - PubMed
  13. Mol Syst Biol. 2011 Oct 11;7:539 - PubMed
  14. FEBS Lett. 1974 Mar 15;40(1):106-9 - PubMed
  15. PLoS One. 2015 Jan 27;10(1):e0117309 - PubMed
  16. Plant Physiol. 2013 Sep;163(1):378-91 - PubMed
  17. Front Plant Sci. 2018 Jan 19;8:2210 - PubMed
  18. Nature. 2020 Dec;588(7837):277-283 - PubMed
  19. Front Cell Dev Biol. 2020 Nov 23;8:606685 - PubMed
  20. Plant J. 2011 Mar;65(5):724-36 - PubMed
  21. Theor Appl Genet. 2013 Jul;126(7):1733-47 - PubMed
  22. Nature. 2014 Jan 23;505(7484):564-8 - PubMed
  23. PLoS One. 2008;3(12):e3824 - PubMed
  24. Micron. 2000 Apr;31(2):121-6 - PubMed
  25. Hum Genet. 2020 Nov;139(11):1443-1454 - PubMed
  26. Nucleic Acids Res. 2021 Jan 8;49(D1):D344-D354 - PubMed
  27. F1000Res. 2020 Apr 22;9: - PubMed
  28. Nucleic Acids Res. 2018 Jul 27;46(13):6712-6725 - PubMed
  29. Funct Integr Genomics. 2020 Sep;20(5):695-710 - PubMed
  30. Proc Natl Acad Sci U S A. 2015 Sep 22;112(38):E5237-45 - PubMed
  31. Eur J Biochem. 1980 Dec;112(3):561-76 - PubMed
  32. BMC Genomics. 2018 Dec 17;19(1):941 - PubMed
  33. J Mol Biol. 1988 Dec 5;204(3):535-48 - PubMed
  34. Proc Natl Acad Sci U S A. 2010 Nov 16;107(46):19754-9 - PubMed
  35. Plant J. 2017 Feb;89(3):601-616 - PubMed
  36. Gene. 2012 Feb 1;493(1):62-8 - PubMed
  37. Nucleic Acids Res. 1994 Feb 25;22(4):686-93 - PubMed
  38. Theor Appl Genet. 1982 Dec;63(4):337-48 - PubMed
  39. Mol Plant Pathol. 2020 Nov;21(11):1481-1494 - PubMed
  40. Science. 2020 May 22;368(6493): - PubMed
  41. Nat Commun. 2020 Mar 5;11(1):1206 - PubMed
  42. BMC Plant Biol. 2018 Oct 5;18(1):221 - PubMed
  43. Front Plant Sci. 2011 Sep 12;2:44 - PubMed
  44. Plant J. 2004 Jul;39(1):29-44 - PubMed
  45. Curr Opin Struct Biol. 2014 Feb;24:165-9 - PubMed
  46. Front Plant Sci. 2016 Apr 14;7:501 - PubMed
  47. Mol Cell. 2019 Feb 21;73(4):645-654.e13 - PubMed
  48. Science. 2018 Aug 17;361(6403): - PubMed
  49. Plant J. 2018 Dec;96(6):1148-1159 - PubMed
  50. Nucleic Acids Res. 2015 Apr 30;43(8):4163-78 - PubMed
  51. Plant J. 2015 Dec;84(6):1206-18 - PubMed
  52. Cells. 2019 Aug 10;8(8): - PubMed
  53. Planta. 1995;197(4):633-40 - PubMed
  54. Chromosoma. 1982;86(4):469-90 - PubMed
  55. Funct Integr Genomics. 2006 Oct;6(4):263-84 - PubMed
  56. Plant Physiol. 2011 Jan;155(1):370-83 - PubMed
  57. Annu Rev Biochem. 2015;84:93-129 - PubMed
  58. BMC Plant Biol. 2017 Nov 14;17(Suppl 1):183 - PubMed
  59. Commun Biol. 2018 Jun 12;1:68 - PubMed
  60. RNA. 2019 Sep;25(9):1164-1176 - PubMed
  61. Trends Cell Biol. 2005 Apr;15(4):194-9 - PubMed
  62. Pak J Biol Sci. 2007 Jul 15;10(14):2327-33 - PubMed
  63. Cell. 2005 Nov 18;123(4):569-80 - PubMed
  64. Plant Mol Biol. 2012 Jun;79(3):285-93 - PubMed
  65. FEBS Lett. 1977;78(1):143-6 - PubMed
  66. Front Plant Sci. 2021 Jan 18;11:598654 - PubMed
  67. Arch Biochem Biophys. 2005 Feb 15;434(2):306-15 - PubMed
  68. Front Plant Sci. 2015 Nov 06;6:976 - PubMed
  69. Planta. 2001 Apr;212(5-6):792-8 - PubMed
  70. Mol Plant Microbe Interact. 2005 Aug;18(8):762-70 - PubMed
  71. J Cell Sci. 1998 Feb;111 ( Pt 3):359-72 - PubMed
  72. Curr Opin Plant Biol. 1998 Oct;1(5):412-8 - PubMed
  73. Plant Physiol. 1997 Jun;114(2):643-52 - PubMed
  74. J Mol Biol. 1988 May 5;201(1):1-17 - PubMed
  75. Biol Cell. 2015 Jun;107(6):159-74 - PubMed
  76. Cells. 2020 Nov 19;9(11): - PubMed
  77. Nature. 2020 Sep;585(7824):298-302 - PubMed
  78. J Mol Biol. 2006 Mar 17;357(1):275-91 - PubMed
  79. Plant J. 2021 Jul;107(1):303-314 - PubMed

Publication Types