Display options
Share it on

J Exp Med. 2022 Feb 07;219(2). doi: 10.1084/jem.20211336. Epub 2021 Dec 15.

B cell-intrinsic TBK1 is essential for germinal center formation during infection and vaccination in mice.

The Journal of experimental medicine

Michelle S J Lee, Takeshi Inoue, Wataru Ise, Julia Matsuo-Dapaah, James B Wing, Burcu Temizoz, Kouji Kobiyama, Tomoya Hayashi, Ashwini Patil, Shimon Sakaguchi, A Katharina Simon, Jelena S Bezbradica, Satoru Nagatoishi, Kouhei Tsumoto, Jun-Ichiro Inoue, Shizuo Akira, Tomohiro Kurosaki, Ken J Ishii, Cevayir Coban

Affiliations

  1. Division of Malaria Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
  2. International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
  3. Laboratory of Lymphocyte Differentiation, Immunology Frontier Research Center, Osaka University, Osaka, Japan.
  4. Laboratory of Human Immunology (Single Cell Immunology), Immunology Frontier Research Center, Osaka University, Osaka, Japan.
  5. Human Single Cell Immunology Team, Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan.
  6. Division of Vaccine Science, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
  7. Combinatics Inc., Tokyo, Japan.
  8. Laboratory of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan.
  9. The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK.
  10. Research Platform Office, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
  11. Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan.
  12. Immunology Frontier Research Center, Osaka University, Osaka, Japan.

PMID: 34910106 PMCID: PMC8679780 DOI: 10.1084/jem.20211336

Abstract

The germinal center (GC) is a site where somatic hypermutation and clonal selection are coupled for antibody affinity maturation against infections. However, how GCs are formed and regulated is incompletely understood. Here, we identified an unexpected role of Tank-binding kinase-1 (TBK1) as a crucial B cell-intrinsic factor for GC formation. Using immunization and malaria infection models, we show that TBK1-deficient B cells failed to form GC despite normal Tfh cell differentiation, although some malaria-infected B cell-specific TBK1-deficient mice could survive by GC-independent mechanisms. Mechanistically, TBK1 phosphorylation elevates in B cells during GC differentiation and regulates the balance of IRF4/BCL6 expression by limiting CD40 and BCR activation through noncanonical NF-κB and AKTT308 signaling. In the absence of TBK1, CD40 and BCR signaling synergistically enhanced IRF4 expression in Pre-GC, leading to BCL6 suppression, and therefore failed to form GCs. As a result, memory B cells generated from TBK1-deficient B cells fail to confer sterile immunity upon reinfection, suggesting that TBK1 determines B cell fate to promote long-lasting humoral immunity.

© 2021 Lee et al.

Conflict of interest statement

Disclosures:   A. Patil reported personal fees from Combinatics Inc. outside the submitted work. No other disclosures were reported.

References

  1. mBio. 2017 Jan 3;8(1): - PubMed
  2. Malar J. 2014 Mar 17;13:100 - PubMed
  3. J Exp Med. 2011 Jun 6;208(6):1243-52 - PubMed
  4. Front Immunol. 2018 Mar 06;9:434 - PubMed
  5. Arthritis Rheumatol. 2019 Jan;71(1):50-62 - PubMed
  6. Am J Pathol. 2010 Jan;176(1):205-17 - PubMed
  7. JCI Insight. 2018 Jan 25;3(2): - PubMed
  8. J Exp Med. 2020 Feb 3;217(2): - PubMed
  9. Proc Natl Acad Sci U S A. 2011 Apr 19;108(16):6474-9 - PubMed
  10. PLoS Pathog. 2017 Sep 27;13(9):e1006576 - PubMed
  11. Life Sci Alliance. 2019 Nov 25;2(6): - PubMed
  12. Proc Natl Acad Sci U S A. 2004 May 25;101(21):8108-13 - PubMed
  13. Nat Med. 2013 Mar;19(3):313-21 - PubMed
  14. J Exp Med. 2017 May 1;214(5):1493-1507 - PubMed
  15. Blood Adv. 2018 Apr 24;2(8):883-894 - PubMed
  16. Nihon Kyobu Shikkan Gakkai Zasshi. 1992 Jun;30(6):1180-5 - PubMed
  17. J Exp Med. 2002 May 6;195(9):1215-21 - PubMed
  18. J Immunol. 2013 Apr 1;190(7):3039-46 - PubMed
  19. J Immunol. 2009 Aug 1;183(3):2176-82 - PubMed
  20. Genome Res. 2014 Sep;24(9):1433-44 - PubMed
  21. Science. 2009 Aug 21;325(5943):1001-5 - PubMed
  22. Curr Opin Immunol. 2017 Apr;45:126-131 - PubMed
  23. Nat Immunol. 2011 Dec 11;13(2):188-95 - PubMed
  24. Nat Med. 2017 Oct;23(10):1220-1225 - PubMed
  25. Mol Cell Biol. 2020 Apr 13;40(9): - PubMed
  26. J Exp Med. 2007 Sep 3;204(9):2103-14 - PubMed
  27. Immunity. 2019 Aug 20;51(2):337-350.e7 - PubMed
  28. Nat Rev Immunol. 2020 Apr;20(4):229-238 - PubMed
  29. PLoS One. 2013 Dec 09;8(12):e83639 - PubMed
  30. Infect Immun. 2004 Jan;72(1):253-9 - PubMed
  31. Nat Immunol. 2012 Nov;13(11):1101-9 - PubMed
  32. Immunity. 2020 Dec 15;53(6):1136-1150 - PubMed
  33. iScience. 2021 Jan 07;24(2):102038 - PubMed
  34. Eur J Immunol. 2019 Sep;49(9):1433-1440 - PubMed
  35. Nat Immunol. 2014 Jul;15(7):631-7 - PubMed
  36. Nat Rev Immunol. 2021 Apr;21(4):209-220 - PubMed
  37. Proc Natl Acad Sci U S A. 2014 Aug 12;111(32):11792-7 - PubMed
  38. Annu Rev Immunol. 2012;30:429-57 - PubMed
  39. Nat Immunol. 2012 Nov;13(11):1092-100 - PubMed
  40. Nat Immunol. 2016 Jul;17(7):825-33 - PubMed
  41. Nat Med. 2011 Jul 17;17(8):996-1002 - PubMed
  42. Nat Immunol. 2011 Jun;12(6):472-7 - PubMed
  43. Nature. 2008 Feb 7;451(7179):725-9 - PubMed
  44. Proc Natl Acad Sci U S A. 2016 Apr 12;113(15):4039-44 - PubMed
  45. Front Immunol. 2016 Nov 07;7:463 - PubMed
  46. Blood. 2011 Apr 14;117(15):4041-51 - PubMed
  47. PLoS Pathog. 2015 Mar 12;11(3):e1004715 - PubMed
  48. Cell. 2019 Apr 18;177(3):524-540 - PubMed
  49. Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50 - PubMed
  50. Cell Rep. 2015 Oct 13;13(2):425-39 - PubMed
  51. Front Immunol. 2018 Sep 05;9:2026 - PubMed
  52. PLoS Pathog. 2016 Nov 3;12(11):e1005999 - PubMed
  53. Proc Natl Acad Sci U S A. 2017 Aug 1;114(31):E6400-E6409 - PubMed
  54. Nature. 2017 Dec 7;552(7683):101-105 - PubMed
  55. Cell. 2018 Feb 8;172(4):731-743.e12 - PubMed
  56. J Immunol. 2010 Dec 15;185(12):7146-50 - PubMed
  57. Nat Rev Immunol. 2018 Apr;18(4):266-278 - PubMed
  58. J Immunol. 2020 May 15;204(10):2852-2863 - PubMed
  59. Immunity. 2013 May 23;38(5):918-29 - PubMed
  60. Proc Natl Acad Sci U S A. 2020 Aug 11;117(32):19465-19474 - PubMed
  61. Immunol Rev. 2009 May;229(1):152-72 - PubMed
  62. Sci Adv. 2020 Feb 05;6(6):eaaw6957 - PubMed
  63. Nat Commun. 2015 Jan 21;6:6074 - PubMed
  64. Mol Cell. 2011 Feb 18;41(4):458-70 - PubMed
  65. Sci Immunol. 2017 Jun 2;2(12): - PubMed
  66. Blood. 2004 Dec 15;104(13):4088-96 - PubMed
  67. J Exp Med. 2012 Oct 22;209(11):2079-97 - PubMed
  68. Nat Immunol. 2006 Jul;7(7):773-82 - PubMed
  69. Elife. 2017 May 12;6: - PubMed
  70. Immunity. 2008 Jul 18;29(1):127-37 - PubMed
  71. Cell Host Microbe. 2015 May 13;17(5):628-41 - PubMed
  72. Immunity. 1994 Jun;1(3):167-78 - PubMed
  73. Cancer Cell. 2007 Sep;12(3):280-92 - PubMed
  74. J Exp Med. 2012 Mar 12;209(3):597-606 - PubMed
  75. Nat Immunol. 2019 Jun;20(6):736-746 - PubMed
  76. Int Immunol. 2018 Mar 10;30(3):121-129 - PubMed
  77. Cell Metab. 2017 Jul 5;26(1):157-170.e7 - PubMed
  78. Nat Med. 2014 May;20(5):503-10 - PubMed
  79. Immunity. 2018 Feb 20;48(2):313-326.e5 - PubMed
  80. J Exp Med. 2014 Sep 22;211(10):2103-18 - PubMed
  81. Nat Immunol. 2012 Nov;13(11):1083-91 - PubMed
  82. Proc Natl Acad Sci U S A. 2016 Aug 9;113(32):9063-8 - PubMed
  83. FEBS Lett. 2013 Apr 17;587(8):1230-7 - PubMed
  84. J Exp Med. 2004 Jun 21;199(12):1641-50 - PubMed
  85. Proc Natl Acad Sci U S A. 2006 Sep 12;103(37):13789-94 - PubMed
  86. Cell. 2010 Nov 12;143(4):592-605 - PubMed
  87. J Immunol. 2014 Apr 1;192(7):3200-6 - PubMed

Publication Types

Grant support