Display options
Share it on

Acta Neuropathol Commun. 2021 Dec 18;9(1):194. doi: 10.1186/s40478-021-01277-5.

De novo pathogenic variant in SETX causes a rapidly progressive neurodegenerative disorder of early childhood-onset with severe axonal polyneuropathy.

Acta neuropathologica communications

Aristides Hadjinicolaou, Kathie J Ngo, Daniel Y Conway, John P Provias, Steven K Baker, Lauren I Brady, Craig L Bennett, Albert R La Spada, Brent L Fogel, Grace Yoon

Affiliations

  1. Division of Neurology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada.
  2. Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, 90095, USA.
  3. Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada.
  4. Department of Medicine, Divisions of Physical Medicine and Neurology, McMaster University, Hamilton, ON, Canada.
  5. Department of Pediatrics, McMaster University Medical Centre, Hamilton, ON, Canada.
  6. Department of Pathology and Laboratory Medicine, University of California, Irvine, USA.
  7. Department of Neurology and Department of Biological Chemistry, UC Institute for Neurotherapeutics, University of California, Irvine, USA.
  8. Departments of Neurology and Human Genetics, David Geffen School of Medicine, Clinical Neurogenomics Research Center, University of California Los Angeles, 695 Charles E. Young Dr. South, Gonda Room 6554A, Los Angeles, CA, 90095, USA. [email protected].
  9. Division of Neurology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada. [email protected].
  10. Division of Clinical and Metabolic Genetics, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, 555 University Avenue, Toronto, ON, M5G 1X8, Canada. [email protected].

PMID: 34922620 PMCID: PMC8684165 DOI: 10.1186/s40478-021-01277-5

Abstract

Pathogenic variants in SETX cause two distinct neurological diseases, a loss-of-function recessive disorder, ataxia with oculomotor apraxia type 2 (AOA2), and a dominant gain-of-function motor neuron disorder, amyotrophic lateral sclerosis type 4 (ALS4). We identified two unrelated patients with the same de novo c.23C > T (p.Thr8Met) variant in SETX presenting with an early-onset, severe polyneuropathy. As rare private gene variation is often difficult to link to genetic neurological disease by DNA sequence alone, we used transcriptional network analysis to functionally validate these patients with severe de novo SETX-related neurodegenerative disorder. Weighted gene co-expression network analysis (WGCNA) was used to identify disease-associated modules from two different ALS4 mouse models and compared to confirmed ALS4 patient data to derive an ALS4-specific transcriptional signature. WGCNA of whole blood RNA-sequencing data from a patient with the p.Thr8Met SETX variant was compared to ALS4 and control patients to determine if this signature could be used to identify affected patients. WGCNA identified overlapping disease-associated modules in ALS4 mouse model data and ALS4 patient data. Mouse ALS4 disease-associated modules were not associated with AOA2 disease modules, confirming distinct disease-specific signatures. The expression profile of a patient carrying the c.23C > T (p.Thr8Met) variant was significantly associated with the human and mouse ALS4 signature, confirming the relationship between this SETX variant and disease. The similar clinical presentations of the two unrelated patients with the same de novo p.Thr8Met variant and the functional data provide strong evidence that the p.Thr8Met variant is pathogenic. The distinct phenotype expands the clinical spectrum of SETX-related disorders.

© 2021. The Author(s).

Keywords: Axonal neuropathy; Neurodegeneration; SETX; Senataxin

References

  1. Neuropediatrics. 2019 Dec;50(6):391-394 - PubMed
  2. Brain. 1999 Aug;122 ( Pt 8):1539-50 - PubMed
  3. Brain. 2002 Jun;125(Pt 6):1320-5 - PubMed
  4. Nature. 2016 Aug 17;536(7616):285-91 - PubMed
  5. J Child Neurol. 2018 Apr;33(5):329-332 - PubMed
  6. Genet Med. 2015 May;17(5):405-24 - PubMed
  7. Brain. 2018 Dec 1;141(12):3331-3342 - PubMed
  8. BMC Bioinformatics. 2008 Dec 29;9:559 - PubMed
  9. Hum Mol Genet. 2014 Sep 15;23(18):4758-69 - PubMed
  10. Nat Commun. 2018 Feb 7;9(1):533 - PubMed
  11. PLoS Comput Biol. 2013;9(8):e1003118 - PubMed
  12. Nat Neurosci. 2015 Dec;18(12):1819-31 - PubMed
  13. Pediatr Neurol. 2014 Nov;51(5):726-9 - PubMed
  14. Brain. 2019 Jul 1;142(7):e31 - PubMed
  15. Rinsho Shinkeigaku. 2020 Jul 31;60(7):466-472 - PubMed
  16. J Neurosci. 2014 Sep 3;34(36):11929-47 - PubMed
  17. Neuromuscul Disord. 2012 Mar;22(3):258-62 - PubMed
  18. PLoS Comput Biol. 2011 Jan 20;7(1):e1001057 - PubMed
  19. Nat Protoc. 2009;4(1):44-57 - PubMed
  20. Nucleic Acids Res. 2021 Jan 8;49(D1):D916-D923 - PubMed
  21. Amyotroph Lateral Scler. 2011 May;12(3):228-30 - PubMed
  22. Genome Biol. 2016 Jun 06;17(1):122 - PubMed
  23. Neurol Sci. 2015 Jun;36(6):1063-4 - PubMed
  24. Adv Neurobiol. 2018;20:265-281 - PubMed
  25. Bioinformatics. 2014 Aug 1;30(15):2114-20 - PubMed
  26. Brain Behav. 2018 Sep;8(9):e01066 - PubMed
  27. J Mol Biol. 2017 Oct 27;429(21):3181-3195 - PubMed
  28. Nature. 2020 May;581(7809):434-443 - PubMed
  29. J Neurol. 2021 Mar;268(3):1050-1058 - PubMed
  30. Brain Dev. 2010 Aug;32(7):592-4 - PubMed
  31. Am J Hum Genet. 2004 Jun;74(6):1128-35 - PubMed
  32. Ann Neurol. 2009 Dec;66(6):759-70 - PubMed
  33. Bioinformatics. 2009 Jul 15;25(14):1841-2 - PubMed
  34. Nucleic Acids Res. 2015 Apr 20;43(7):e47 - PubMed
  35. Ann Neurol. 2020 Apr;87(4):547-555 - PubMed
  36. Acta Neuropathol. 2018 Sep;136(3):425-443 - PubMed
  37. Mol Cell Biol. 1992 May;12(5):2154-64 - PubMed
  38. Genome Biol. 2010;11(10):R106 - PubMed
  39. Heliyon. 2020 Jun 13;6(6):e04165 - PubMed
  40. Proc Natl Acad Sci U S A. 2018 Jun 12;115(24):E5516-E5525 - PubMed
  41. Bioinformatics. 2013 Jan 1;29(1):15-21 - PubMed
  42. Am J Hum Genet. 1998 Mar;62(3):633-40 - PubMed
  43. Nat Methods. 2014 Apr;11(4):361-2 - PubMed
  44. Mov Disord Clin Pract. 2020 Sep 29;7(8):940-949 - PubMed
  45. J Neurol Neurosurg Psychiatry. 2017 Jul;88(7):575-585 - PubMed
  46. Autophagy. 2021 Aug;17(8):1889-1906 - PubMed
  47. Cerebellum. 2019 Jun;18(3):448-456 - PubMed
  48. Rinsho Shinkeigaku. 2017 Nov 25;57(11):685-690 - PubMed
  49. Nat Immunol. 2015 May;16(5):485-94 - PubMed

Publication Types

Grant support