Display options
Share it on

Neurobiol Pain. 2021 Dec 21;11:100081. doi: 10.1016/j.ynpai.2021.100081. eCollection 2022.

Evaluation of calcium-sensitive adenylyl cyclase AC1 and AC8 mRNA expression in the anterior cingulate cortex of mice with spared nerve injury neuropathy.

Neurobiology of pain (Cambridge, Mass.)

Stephanie Shiers, Hajira Elahi, Stephanie Hennen, Theodore J Price

Affiliations

  1. The University of Texas at Dallas, Center for Advanced Pain Studies and Department of Neuroscience, Richardson, TX, USA.
  2. Grünenthal GmbH, Aachen, Germany.

PMID: 35005298 PMCID: PMC8715370 DOI: 10.1016/j.ynpai.2021.100081

Abstract

The anterior cingulate cortex (ACC) is a critical region of the brain for the emotional and affective components of pain in rodents and humans. Hyperactivity in this region has been observed in neuropathic pain states in both patients and animal models and ablation of this region from cingulotomy, or inhibition with genetics or pharmacology can diminish pain and anxiety. Two adenylyl cyclases (AC), AC1 and AC8 play an important role in regulating nociception and anxiety-like behaviors through an action in the ACC, as genetic and pharmacological targeting of these enzymes reduces mechanical hypersensitivity and anxiety-like behavior, respectively. However, the distribution of these ACs in the ACC has not been studied in the context of neuropathic pain. To address this gap in knowledge, we conducted RNAscope

© 2021 The Author(s).

Keywords: AC1; AC8; Adenylyl cycles; Neuropathic pain

Conflict of interest statement

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper other than that SH is an emplo

References

  1. Neurobiol Pain. 2017 Aug-Dec;2:1-12 - PubMed
  2. Cell. 2018 Aug 9;174(4):999-1014.e22 - PubMed
  3. Mol Pain. 2021 Jan-Dec;17:17448069211021698 - PubMed
  4. World Neurosurg. 2019 Jan;121:196-200 - PubMed
  5. Arch Oral Biol. 2019 Feb;98:81-86 - PubMed
  6. J Neurosci. 2014 Oct 1;34(40):13505-15 - PubMed
  7. Mol Pain. 2006 Feb 17;2:7 - PubMed
  8. Curr Opin Neurobiol. 1997 Jun;7(3):391-6 - PubMed
  9. J Neurophysiol. 2005 Jul;94(1):878-82 - PubMed
  10. Pain. 2011 May;152(5):990-1000 - PubMed
  11. J Chem Neuroanat. 2011 Jan;41(1):43-54 - PubMed
  12. Neuron. 2015 Jan 21;85(2):377-89 - PubMed
  13. Sci Transl Med. 2011 Jan 12;3(65):65ra3 - PubMed
  14. Br J Neurosurg. 2014 Aug;28(4):471-4 - PubMed
  15. Science. 2013 Sep 20;341(6152):1394-9 - PubMed
  16. Rev Neurosci. 2012;23(1):67-78 - PubMed
  17. PLoS One. 2015 Feb 25;10(2):e0117746 - PubMed
  18. J Neurochem. 2020 Apr;153(2):252-263 - PubMed
  19. Mol Brain. 2016 May 27;9(1):60 - PubMed
  20. Science. 1997 Aug 15;277(5328):968-71 - PubMed
  21. Neurosignals. 2009;17(1):5-22 - PubMed
  22. J Neurosci. 2014 Apr 23;34(17):5754-64 - PubMed
  23. Mol Brain. 2015 Dec 02;8(1):81 - PubMed
  24. Sci Signal. 2017 Feb 21;10(467): - PubMed
  25. J Neurophysiol. 2001 Jul;86(1):402-11 - PubMed
  26. J Neurosci. 2000 Jul 1;20(13):4809-20 - PubMed
  27. Neuron. 2002 Nov 14;36(4):713-26 - PubMed
  28. J Neurosci Methods. 1994 Jul;53(1):55-63 - PubMed
  29. Science. 2017 May 26;356(6340): - PubMed
  30. Pain Med. 2004 Mar;5 Suppl 1:S9-S27 - PubMed
  31. J Comp Neurol. 2006 Jun 10;496(5):684-97 - PubMed
  32. Neuroimage. 2009 Sep;47(3):1007-14 - PubMed
  33. Neurosurgery. 1999 Nov;45(5):1129-34; discussion 1134-6 - PubMed
  34. J Neurosci. 2008 Jul 16;28(29):7445-53 - PubMed
  35. Neurobiol Dis. 2019 Jul;127:76-86 - PubMed
  36. Mol Brain. 2012 May 14;5:14 - PubMed
  37. Sci Signal. 2017 Mar 21;10(471): - PubMed
  38. Exp Neurol. 2004 Jul;188(1):139-48 - PubMed
  39. Science. 1991 Mar 15;251(4999):1355-8 - PubMed
  40. Nat Commun. 2017 Feb 20;8:14359 - PubMed
  41. Neurosurgery. 1990 Aug;27(2):220-3 - PubMed
  42. Pain Physician. 2016 Nov-Dec;19(8):537-550 - PubMed
  43. J Neurosci. 2018 Mar 21;38(12):3102-3115 - PubMed
  44. J Clin Invest. 2021 Aug 2;131(15): - PubMed

Publication Types