Display options
Share it on

Antioxidants (Basel). 2021 Nov 27;10(12). doi: 10.3390/antiox10121902.

Role of the Redox State of Human Peroxiredoxin-5 on Its TLR4-Activating DAMP Function.

Antioxidants (Basel, Switzerland)

Mégane A Poncin, Pierre Van Meerbeeck, Joshua D Simpson, André Clippe, François Tyckaert, Fabrice Bouillenne, Hervé Degand, André Matagne, Pierre Morsomme, Bernard Knoops, David Alsteens

Affiliations

  1. Louvain Institue of Biomolecular Science and Technology, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium.
  2. Centre for Protein Engineering, InBioS, University of Liëge, Building B6C, Quartier Agora, Allée du 6 Août, 13, 4000 Liëge (Sart-Tilman), Belgium.

PMID: 34943005 DOI: 10.3390/antiox10121902

Abstract

Human peroxiredoxin-5 (PRDX5) is a unique redox-sensitive protein that plays a dual role in brain ischemia-reperfusion injury. While intracellular PRDX5 has been reported to act as a neuroprotective antioxidative enzyme by scavenging peroxides, once released extracellularly from necrotic brain cells, the protein aggravates neural cell death by inducing expression of proinflammatory cytokines in macrophages through activation of Toll-like receptor (TLR) 2 (TLR2) and 4 (TLR4). Although recent evidence showed that PRDX5 was able to interact directly with TLR4, little is known regarding the role of the cysteine redox state of PRDX5 on its DAMP function. To gain insights into the role of PRDX5 redox-active cysteine residues in the TLR4-dependent proinflammatory activity of the protein, we used a recombinant human PRDX5 in the disulfide (oxidized) form and a mutant version lacking the peroxidatic cysteine, as well as chemically reduced and hyperoxidized PRDX5 proteins. We first analyzed the oxidation state and oligomerization profile by Western blot, mass spectrometry, and SEC-MALS. Using ELISA, we demonstrate that the disulfide bridge between the enzymatic cysteines is required to allow improved TLR4-dependent IL-8 secretion. Moreover, single-molecule force spectroscopy experiments revealed that TLR4 alone is not sufficient to discriminate the different PRDX5 redox forms. Finally, flow cytometry binding assays show that disulfide PRDX5 has a higher propensity to bind to the surface of living TLR4-expressing cells than the mutant protein. Taken together, these results demonstrate the importance of the redox state of PRDX5 cysteine residues on TLR4-induced inflammation.

Keywords: DAMP; PRDX5; SMFS; TLR4; Toll-like receptor; atomic force microscopy; cysteine residue; peroxiredoxins; redox

References

  1. Free Radic Biol Med. 2019 Jun;137:24-36 - PubMed
  2. Int J Mol Sci. 2021 Jan 18;22(2): - PubMed
  3. FEBS Lett. 1996 Feb 26;381(1-2):12-14 - PubMed
  4. Infect Immun. 2002 Dec;70(12):6638-45 - PubMed
  5. J Exp Med. 1999 Jun 7;189(11):1777-82 - PubMed
  6. J Am Soc Mass Spectrom. 1992 Mar;3(3):207-15 - PubMed
  7. J Biol Chem. 2008 Oct 24;283(43):28873-80 - PubMed
  8. J Biochem. 2019 Jun 1;165(6):459-464 - PubMed
  9. Arch Biochem Biophys. 2008 Sep 1;477(1):98-104 - PubMed
  10. Immunology. 2021 May;163(1):46-59 - PubMed
  11. Proc Natl Acad Sci U S A. 2010 Jun 29;107(26):11942-7 - PubMed
  12. J Mol Biol. 2004 Apr 9;337(5):1079-90 - PubMed
  13. Nat Med. 2012 Jun;18(6):911-7 - PubMed
  14. Nat Nanotechnol. 2017 Feb;12(2):177-183 - PubMed
  15. Sci Adv. 2018 Aug 17;4(8):eaat1273 - PubMed
  16. Mol Cell. 2010 Dec 10;40(5):787-97 - PubMed
  17. BMB Rep. 2017 Feb;50(2):55-57 - PubMed
  18. J Biol Chem. 2002 Oct 11;277(41):38029-36 - PubMed
  19. Biophys J. 1997 Apr;72(4):1541-55 - PubMed
  20. J Comp Neurol. 2012 Feb 1;520(2):258-80 - PubMed
  21. FEBS Lett. 2005 Apr 25;579(11):2327-33 - PubMed
  22. Trends Biochem Sci. 2003 Jan;28(1):32-40 - PubMed
  23. Antioxid Redox Signal. 2011 Aug 1;15(3):817-29 - PubMed
  24. Science. 1990 Sep 21;249(4975):1431-3 - PubMed
  25. J Mol Biol. 2001 Aug 24;311(4):751-9 - PubMed
  26. Proc Natl Acad Sci U S A. 2004 Mar 16;101(11):3780-5 - PubMed
  27. FEBS Lett. 2009 Jun 18;583(12):1809-16 - PubMed
  28. Nat Struct Biol. 1998 May;5(5):400-6 - PubMed
  29. Science. 2003 Apr 25;300(5619):653-6 - PubMed
  30. J Neuroinflammation. 2018 Mar 19;15(1):87 - PubMed
  31. Biochemistry. 2014 Sep 30;53(38):6113-25 - PubMed
  32. Biochemistry. 2018 Jun 19;57(24):3416-3424 - PubMed
  33. J Exp Med. 2012 Aug 27;209(9):1519-28 - PubMed
  34. PLoS One. 2010 Mar 17;5(3):e9744 - PubMed
  35. Protein Sci. 1995 Dec;4(12):2616-8 - PubMed
  36. Cell Chem Biol. 2018 May 17;25(5):550-559.e3 - PubMed
  37. Anal Biochem. 2013 Apr 1;435(1):74-82 - PubMed
  38. J Immunol. 2010 Jan 15;184(2):1022-30 - PubMed
  39. Free Radic Biol Med. 2003 Apr 1;34(7):862-72 - PubMed
  40. Mol Cell Proteomics. 2016 Jun;15(6):2125-40 - PubMed
  41. Science. 2007 May 25;316(5828):1148-53 - PubMed
  42. FEBS Lett. 2004 Jul 30;571(1-3):161-5 - PubMed
  43. Mol Cell Biochem. 2019 Nov;461(1-2):91-102 - PubMed
  44. Shock. 2006 Aug;26(2):174-9 - PubMed
  45. J Biol Chem. 2000 Jul 7;275(27):20346-54 - PubMed
  46. J Biol Chem. 2014 May 2;289(18):12356-64 - PubMed
  47. Proc Natl Acad Sci U S A. 1999 Oct 26;96(22):12333-8 - PubMed
  48. Cell Immunol. 1993 Mar;147(1):1-11 - PubMed
  49. J Biol Chem. 2005 Aug 5;280(31):28775-84 - PubMed

Publication Types